| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax12 | Structured version Visualization version Unicode version | ||
| Description: Rederivation of axiom ax-12 2047 from ax12v 2048 (used only via sp 2053) , axc11r 2187, and axc15 2303 (on top of Tarski's FOL). (Contributed by NM, 22-Jan-2007.) Proof uses contemporary axioms. (Revised by Wolf Lammen, 8-Aug-2020.) (Proof shortened by BJ, 4-Jul-2021.) |
| Ref | Expression |
|---|---|
| ax12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axc11r 2187 |
. . . 4
| |
| 2 | ala1 1741 |
. . . 4
| |
| 3 | 1, 2 | syl6 35 |
. . 3
|
| 4 | 3 | a1d 25 |
. 2
|
| 5 | sp 2053 |
. . 3
| |
| 6 | axc15 2303 |
. . 3
| |
| 7 | 5, 6 | syl7 74 |
. 2
|
| 8 | 4, 7 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: equs5a 2348 equs5e 2349 bj-ax12v3 32675 axc11-o 34236 |
| Copyright terms: Public domain | W3C validator |