MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc15 Structured version   Visualization version   Unicode version

Theorem axc15 2303
Description: Derivation of set.mm's original ax-c15 34174 from ax-c11n 34173 and the shorter ax-12 2047 that has replaced it.

Theorem ax12 2304 shows the reverse derivation of ax-12 2047 from ax-c15 34174.

Normally, axc15 2303 should be used rather than ax-c15 34174, except by theorems specifically studying the latter's properties. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 21-Apr-2018.)

Assertion
Ref Expression
axc15  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )

Proof of Theorem axc15
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ax6ev 1890 . 2  |-  E. z 
z  =  y
2 dveeq2 2298 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
3 ax12v 2048 . . . . 5  |-  ( x  =  z  ->  ( ph  ->  A. x ( x  =  z  ->  ph )
) )
4 equequ2 1953 . . . . . . 7  |-  ( z  =  y  ->  (
x  =  z  <->  x  =  y ) )
54sps 2055 . . . . . 6  |-  ( A. x  z  =  y  ->  ( x  =  z  <-> 
x  =  y ) )
6 nfa1 2028 . . . . . . . 8  |-  F/ x A. x  z  =  y
75imbi1d 331 . . . . . . . 8  |-  ( A. x  z  =  y  ->  ( ( x  =  z  ->  ph )  <->  ( x  =  y  ->  ph )
) )
86, 7albid 2090 . . . . . . 7  |-  ( A. x  z  =  y  ->  ( A. x ( x  =  z  ->  ph )  <->  A. x ( x  =  y  ->  ph )
) )
98imbi2d 330 . . . . . 6  |-  ( A. x  z  =  y  ->  ( ( ph  ->  A. x ( x  =  z  ->  ph ) )  <-> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
105, 9imbi12d 334 . . . . 5  |-  ( A. x  z  =  y  ->  ( ( x  =  z  ->  ( ph  ->  A. x ( x  =  z  ->  ph )
) )  <->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) ) )
113, 10mpbii 223 . . . 4  |-  ( A. x  z  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph ) ) ) )
122, 11syl6 35 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) ) )
1312exlimdv 1861 . 2  |-  ( -. 
A. x  x  =  y  ->  ( E. z  z  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph ) ) ) ) )
141, 13mpi 20 1  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  ax12  2304  ax12OLD  2341  ax12b  2345  equs5  2351  ax12vALT  2428  bj-ax12v3ALT  32676
  Copyright terms: Public domain W3C validator