| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equs5e | Structured version Visualization version Unicode version | ||
| Description: A property related to substitution that unlike equs5 2351 does not require a distinctor antecedent. See equs5eALT 2178 for an alternate proof using ax-12 2047 but not ax13 2249. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 15-Jan-2018.) |
| Ref | Expression |
|---|---|
| equs5e |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2028 |
. 2
| |
| 2 | ax12 2304 |
. . 3
| |
| 3 | hbe1 2021 |
. . . 4
| |
| 4 | 3 | 19.23bi 2061 |
. . 3
|
| 5 | 2, 4 | impel 485 |
. 2
|
| 6 | 1, 5 | exlimi 2086 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: sb4e 2362 |
| Copyright terms: Public domain | W3C validator |