MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11r Structured version   Visualization version   Unicode version

Theorem axc11r 2187
Description: Same as axc11 2314 but with reversed antecedent. Note the use of ax-12 2047 (and not merely ax12v 2048). (Contributed by NM, 25-Jul-2015.)
Assertion
Ref Expression
axc11r  |-  ( A. y  y  =  x  ->  ( A. x ph  ->  A. y ph )
)

Proof of Theorem axc11r
StepHypRef Expression
1 ax-12 2047 . . 3  |-  ( y  =  x  ->  ( A. x ph  ->  A. y
( y  =  x  ->  ph ) ) )
21sps 2055 . 2  |-  ( A. y  y  =  x  ->  ( A. x ph  ->  A. y ( y  =  x  ->  ph )
) )
3 pm2.27 42 . . 3  |-  ( y  =  x  ->  (
( y  =  x  ->  ph )  ->  ph )
)
43al2imi 1743 . 2  |-  ( A. y  y  =  x  ->  ( A. y ( y  =  x  ->  ph )  ->  A. y ph ) )
52, 4syld 47 1  |-  ( A. y  y  =  x  ->  ( A. x ph  ->  A. y ph )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by:  ax12  2304  axc11n  2307  axc11nOLD  2308  axc11nOLDOLD  2309  axc11nALT  2310  axc11  2314  hbae  2315  dral1  2325  dral1ALT  2326  axpowndlem3  9421  axc11n11r  32673  bj-ax12v3ALT  32676  bj-axc11v  32747  bj-dral1v  32748  bj-hbaeb2  32805
  Copyright terms: Public domain W3C validator