| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axc11r | Structured version Visualization version Unicode version | ||
| Description: Same as axc11 2314 but with reversed antecedent. Note the use of ax-12 2047 (and not merely ax12v 2048). (Contributed by NM, 25-Jul-2015.) |
| Ref | Expression |
|---|---|
| axc11r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-12 2047 |
. . 3
| |
| 2 | 1 | sps 2055 |
. 2
|
| 3 | pm2.27 42 |
. . 3
| |
| 4 | 3 | al2imi 1743 |
. 2
|
| 5 | 2, 4 | syld 47 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: ax12 2304 axc11n 2307 axc11nOLD 2308 axc11nOLDOLD 2309 axc11nALT 2310 axc11 2314 hbae 2315 dral1 2325 dral1ALT 2326 axpowndlem3 9421 axc11n11r 32673 bj-ax12v3ALT 32676 bj-axc11v 32747 bj-dral1v 32748 bj-hbaeb2 32805 |
| Copyright terms: Public domain | W3C validator |