| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax6e2eqVD | Structured version Visualization version Unicode version | ||
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 38785)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2eq 38773 is ax6e2eqVD 39143 without virtual
deductions and was automatically derived from ax6e2eqVD 39143.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| Ref | Expression |
|---|---|
| ax6e2eqVD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 38790 |
. . . . . 6
| |
| 2 | ax6ev 1890 |
. . . . . . . . . 10
| |
| 3 | hba1 2151 |
. . . . . . . . . . . . . 14
| |
| 4 | sp 2053 |
. . . . . . . . . . . . . 14
| |
| 5 | 3, 4 | impbii 199 |
. . . . . . . . . . . . 13
|
| 6 | idn2 38838 |
. . . . . . . . . . . . . . . . 17
| |
| 7 | sp 2053 |
. . . . . . . . . . . . . . . . . . 19
| |
| 8 | 1, 7 | e1a 38852 |
. . . . . . . . . . . . . . . . . 18
|
| 9 | ax7 1943 |
. . . . . . . . . . . . . . . . . . 19
| |
| 10 | 9 | com12 32 |
. . . . . . . . . . . . . . . . . 18
|
| 11 | 6, 8, 10 | e21 38957 |
. . . . . . . . . . . . . . . . 17
|
| 12 | pm3.2 463 |
. . . . . . . . . . . . . . . . 17
| |
| 13 | 6, 11, 12 | e22 38896 |
. . . . . . . . . . . . . . . 16
|
| 14 | 13 | in2 38830 |
. . . . . . . . . . . . . . 15
|
| 15 | 14 | in1 38787 |
. . . . . . . . . . . . . 14
|
| 16 | 15 | alimi 1739 |
. . . . . . . . . . . . 13
|
| 17 | 5, 16 | sylbi 207 |
. . . . . . . . . . . 12
|
| 18 | 1, 17 | e1a 38852 |
. . . . . . . . . . 11
|
| 19 | exim 1761 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | e1a 38852 |
. . . . . . . . . 10
|
| 21 | pm2.27 42 |
. . . . . . . . . 10
| |
| 22 | 2, 20, 21 | e01 38916 |
. . . . . . . . 9
|
| 23 | 22 | in1 38787 |
. . . . . . . 8
|
| 24 | 23 | axc4i 2131 |
. . . . . . 7
|
| 25 | 1, 24 | e1a 38852 |
. . . . . 6
|
| 26 | axc11 2314 |
. . . . . 6
| |
| 27 | 1, 25, 26 | e11 38913 |
. . . . 5
|
| 28 | 19.2 1892 |
. . . . 5
| |
| 29 | 27, 28 | e1a 38852 |
. . . 4
|
| 30 | excomim 2043 |
. . . 4
| |
| 31 | 29, 30 | e1a 38852 |
. . 3
|
| 32 | idn1 38790 |
. . . . . . . . . . 11
| |
| 33 | idn2 38838 |
. . . . . . . . . . . 12
| |
| 34 | simpr 477 |
. . . . . . . . . . . 12
| |
| 35 | 33, 34 | e2 38856 |
. . . . . . . . . . 11
|
| 36 | equtrr 1949 |
. . . . . . . . . . 11
| |
| 37 | 32, 35, 36 | e12 38951 |
. . . . . . . . . 10
|
| 38 | simpl 473 |
. . . . . . . . . . 11
| |
| 39 | 33, 38 | e2 38856 |
. . . . . . . . . 10
|
| 40 | pm3.21 464 |
. . . . . . . . . 10
| |
| 41 | 37, 39, 40 | e22 38896 |
. . . . . . . . 9
|
| 42 | 41 | in2 38830 |
. . . . . . . 8
|
| 43 | 42 | gen11 38841 |
. . . . . . 7
|
| 44 | exim 1761 |
. . . . . . 7
| |
| 45 | 43, 44 | e1a 38852 |
. . . . . 6
|
| 46 | 45 | gen11 38841 |
. . . . 5
|
| 47 | exim 1761 |
. . . . 5
| |
| 48 | 46, 47 | e1a 38852 |
. . . 4
|
| 49 | 48 | in1 38787 |
. . 3
|
| 50 | pm2.04 90 |
. . . 4
| |
| 51 | 50 | com12 32 |
. . 3
|
| 52 | 31, 49, 51 | e10 38919 |
. 2
|
| 53 | 52 | in1 38787 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-vd1 38786 df-vd2 38794 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |