MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11 Structured version   Visualization version   Unicode version

Theorem axc11 2314
Description: Show that ax-c11 34172 can be derived from ax-c11n 34173 in the form of axc11n 2307. Normally, axc11 2314 should be used rather than ax-c11 34172, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof shortened by Wolf Lammen, 21-Apr-2018.)
Assertion
Ref Expression
axc11  |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ph )
)

Proof of Theorem axc11
StepHypRef Expression
1 axc11r 2187 . 2  |-  ( A. y  y  =  x  ->  ( A. x ph  ->  A. y ph )
)
21aecoms 2312 1  |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ph )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  hbae  2315  dral1  2325  dral1ALT  2326  nd1  9409  nd2  9410  axc11n11  32672  bj-hbaeb2  32805  wl-aetr  33317  ax6e2eq  38773  ax6e2eqVD  39143  2sb5ndVD  39146  2sb5ndALT  39168
  Copyright terms: Public domain W3C validator