| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axc11 | Structured version Visualization version Unicode version | ||
| Description: Show that ax-c11 34172 can be derived from ax-c11n 34173 in the form of axc11n 2307. Normally, axc11 2314 should be used rather than ax-c11 34172, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) |
| Ref | Expression |
|---|---|
| axc11 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axc11r 2187 |
. 2
| |
| 2 | 1 | aecoms 2312 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: hbae 2315 dral1 2325 dral1ALT 2326 nd1 9409 nd2 9410 axc11n11 32672 bj-hbaeb2 32805 wl-aetr 33317 ax6e2eq 38773 ax6e2eqVD 39143 2sb5ndVD 39146 2sb5ndALT 39168 |
| Copyright terms: Public domain | W3C validator |