| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax6e2ndVD | Structured version Visualization version Unicode version | ||
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 38785)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2nd 38774 is ax6e2ndVD 39144 without virtual
deductions and was automatically derived from ax6e2ndVD 39144.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| Ref | Expression |
|---|---|
| ax6e2ndVD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . . . . 7
| |
| 2 | ax6e 2250 |
. . . . . . 7
| |
| 3 | 1, 2 | pm3.2i 471 |
. . . . . 6
|
| 4 | 19.42v 1918 |
. . . . . . 7
| |
| 5 | 4 | biimpri 218 |
. . . . . 6
|
| 6 | 3, 5 | e0a 38999 |
. . . . 5
|
| 7 | isset 3207 |
. . . . . . 7
| |
| 8 | 7 | anbi1i 731 |
. . . . . 6
|
| 9 | 8 | exbii 1774 |
. . . . 5
|
| 10 | 6, 9 | mpbi 220 |
. . . 4
|
| 11 | idn1 38790 |
. . . . . 6
| |
| 12 | hbnae 2317 |
. . . . . . 7
| |
| 13 | hbn1 2020 |
. . . . . . . . . . . 12
| |
| 14 | ax-5 1839 |
. . . . . . . . . . . . . . . 16
| |
| 15 | ax-5 1839 |
. . . . . . . . . . . . . . . 16
| |
| 16 | idn1 38790 |
. . . . . . . . . . . . . . . . . 18
| |
| 17 | equequ1 1952 |
. . . . . . . . . . . . . . . . . 18
| |
| 18 | 16, 17 | e1a 38852 |
. . . . . . . . . . . . . . . . 17
|
| 19 | 18 | in1 38787 |
. . . . . . . . . . . . . . . 16
|
| 20 | 14, 15, 19 | dvelimh 2336 |
. . . . . . . . . . . . . . 15
|
| 21 | 11, 20 | e1a 38852 |
. . . . . . . . . . . . . 14
|
| 22 | 21 | in1 38787 |
. . . . . . . . . . . . 13
|
| 23 | 22 | alimi 1739 |
. . . . . . . . . . . 12
|
| 24 | 13, 23 | syl 17 |
. . . . . . . . . . 11
|
| 25 | 11, 24 | e1a 38852 |
. . . . . . . . . 10
|
| 26 | 19.41rg 38766 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | e1a 38852 |
. . . . . . . . 9
|
| 28 | 27 | in1 38787 |
. . . . . . . 8
|
| 29 | 28 | alimi 1739 |
. . . . . . 7
|
| 30 | 12, 29 | syl 17 |
. . . . . 6
|
| 31 | 11, 30 | e1a 38852 |
. . . . 5
|
| 32 | exim 1761 |
. . . . 5
| |
| 33 | 31, 32 | e1a 38852 |
. . . 4
|
| 34 | pm2.27 42 |
. . . 4
| |
| 35 | 10, 33, 34 | e01 38916 |
. . 3
|
| 36 | excomim 2043 |
. . 3
| |
| 37 | 35, 36 | e1a 38852 |
. 2
|
| 38 | 37 | in1 38787 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-vd1 38786 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |