| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axcontlem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for axcont 25856. Change bound variables for later use. (Contributed by Scott Fenton, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| axcontlem1.1 |
|
| Ref | Expression |
|---|---|
| axcontlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axcontlem1.1 |
. 2
| |
| 2 | eleq1 2689 |
. . . . 5
| |
| 3 | 2 | adantr 481 |
. . . 4
|
| 4 | eleq1 2689 |
. . . . . 6
| |
| 5 | 4 | adantl 482 |
. . . . 5
|
| 6 | fveq1 6190 |
. . . . . . . 8
| |
| 7 | oveq2 6658 |
. . . . . . . . . 10
| |
| 8 | 7 | oveq1d 6665 |
. . . . . . . . 9
|
| 9 | oveq1 6657 |
. . . . . . . . 9
| |
| 10 | 8, 9 | oveq12d 6668 |
. . . . . . . 8
|
| 11 | 6, 10 | eqeqan12d 2638 |
. . . . . . 7
|
| 12 | 11 | ralbidv 2986 |
. . . . . 6
|
| 13 | fveq2 6191 |
. . . . . . . 8
| |
| 14 | fveq2 6191 |
. . . . . . . . . 10
| |
| 15 | 14 | oveq2d 6666 |
. . . . . . . . 9
|
| 16 | fveq2 6191 |
. . . . . . . . . 10
| |
| 17 | 16 | oveq2d 6666 |
. . . . . . . . 9
|
| 18 | 15, 17 | oveq12d 6668 |
. . . . . . . 8
|
| 19 | 13, 18 | eqeq12d 2637 |
. . . . . . 7
|
| 20 | 19 | cbvralv 3171 |
. . . . . 6
|
| 21 | 12, 20 | syl6bb 276 |
. . . . 5
|
| 22 | 5, 21 | anbi12d 747 |
. . . 4
|
| 23 | 3, 22 | anbi12d 747 |
. . 3
|
| 24 | 23 | cbvopabv 4722 |
. 2
|
| 25 | 1, 24 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: axcontlem6 25849 axcontlem11 25854 |
| Copyright terms: Public domain | W3C validator |