MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem1 Structured version   Visualization version   Unicode version

Theorem axcontlem1 25844
Description: Lemma for axcont 25856. Change bound variables for later use. (Contributed by Scott Fenton, 20-Jun-2013.)
Hypothesis
Ref Expression
axcontlem1.1  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
Assertion
Ref Expression
axcontlem1  |-  F  =  { <. y ,  s
>.  |  ( y  e.  D  /\  (
s  e.  ( 0 [,) +oo )  /\  A. j  e.  ( 1 ... N ) ( y `  j )  =  ( ( ( 1  -  s )  x.  ( Z `  j ) )  +  ( s  x.  ( U `  j )
) ) ) ) }
Distinct variable groups:    D, s,
t, x, y    i,
j, s, t, x, y, N    U, i,
j, s, t, x, y    i, Z, j, s, t, x, y
Allowed substitution hints:    D( i, j)    F( x, y, t, i, j, s)

Proof of Theorem axcontlem1
StepHypRef Expression
1 axcontlem1.1 . 2  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
2 eleq1 2689 . . . . 5  |-  ( x  =  y  ->  (
x  e.  D  <->  y  e.  D ) )
32adantr 481 . . . 4  |-  ( ( x  =  y  /\  t  =  s )  ->  ( x  e.  D  <->  y  e.  D ) )
4 eleq1 2689 . . . . . 6  |-  ( t  =  s  ->  (
t  e.  ( 0 [,) +oo )  <->  s  e.  ( 0 [,) +oo ) ) )
54adantl 482 . . . . 5  |-  ( ( x  =  y  /\  t  =  s )  ->  ( t  e.  ( 0 [,) +oo )  <->  s  e.  ( 0 [,) +oo ) ) )
6 fveq1 6190 . . . . . . . 8  |-  ( x  =  y  ->  (
x `  i )  =  ( y `  i ) )
7 oveq2 6658 . . . . . . . . . 10  |-  ( t  =  s  ->  (
1  -  t )  =  ( 1  -  s ) )
87oveq1d 6665 . . . . . . . . 9  |-  ( t  =  s  ->  (
( 1  -  t
)  x.  ( Z `
 i ) )  =  ( ( 1  -  s )  x.  ( Z `  i
) ) )
9 oveq1 6657 . . . . . . . . 9  |-  ( t  =  s  ->  (
t  x.  ( U `
 i ) )  =  ( s  x.  ( U `  i
) ) )
108, 9oveq12d 6668 . . . . . . . 8  |-  ( t  =  s  ->  (
( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( U `  i ) ) )  =  ( ( ( 1  -  s )  x.  ( Z `  i ) )  +  ( s  x.  ( U `  i )
) ) )
116, 10eqeqan12d 2638 . . . . . . 7  |-  ( ( x  =  y  /\  t  =  s )  ->  ( ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( U `  i ) ) )  <-> 
( y `  i
)  =  ( ( ( 1  -  s
)  x.  ( Z `
 i ) )  +  ( s  x.  ( U `  i
) ) ) ) )
1211ralbidv 2986 . . . . . 6  |-  ( ( x  =  y  /\  t  =  s )  ->  ( A. i  e.  ( 1 ... N
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( U `  i ) ) )  <->  A. i  e.  (
1 ... N ) ( y `  i )  =  ( ( ( 1  -  s )  x.  ( Z `  i ) )  +  ( s  x.  ( U `  i )
) ) ) )
13 fveq2 6191 . . . . . . . 8  |-  ( i  =  j  ->  (
y `  i )  =  ( y `  j ) )
14 fveq2 6191 . . . . . . . . . 10  |-  ( i  =  j  ->  ( Z `  i )  =  ( Z `  j ) )
1514oveq2d 6666 . . . . . . . . 9  |-  ( i  =  j  ->  (
( 1  -  s
)  x.  ( Z `
 i ) )  =  ( ( 1  -  s )  x.  ( Z `  j
) ) )
16 fveq2 6191 . . . . . . . . . 10  |-  ( i  =  j  ->  ( U `  i )  =  ( U `  j ) )
1716oveq2d 6666 . . . . . . . . 9  |-  ( i  =  j  ->  (
s  x.  ( U `
 i ) )  =  ( s  x.  ( U `  j
) ) )
1815, 17oveq12d 6668 . . . . . . . 8  |-  ( i  =  j  ->  (
( ( 1  -  s )  x.  ( Z `  i )
)  +  ( s  x.  ( U `  i ) ) )  =  ( ( ( 1  -  s )  x.  ( Z `  j ) )  +  ( s  x.  ( U `  j )
) ) )
1913, 18eqeq12d 2637 . . . . . . 7  |-  ( i  =  j  ->  (
( y `  i
)  =  ( ( ( 1  -  s
)  x.  ( Z `
 i ) )  +  ( s  x.  ( U `  i
) ) )  <->  ( y `  j )  =  ( ( ( 1  -  s )  x.  ( Z `  j )
)  +  ( s  x.  ( U `  j ) ) ) ) )
2019cbvralv 3171 . . . . . 6  |-  ( A. i  e.  ( 1 ... N ) ( y `  i )  =  ( ( ( 1  -  s )  x.  ( Z `  i ) )  +  ( s  x.  ( U `  i )
) )  <->  A. j  e.  ( 1 ... N
) ( y `  j )  =  ( ( ( 1  -  s )  x.  ( Z `  j )
)  +  ( s  x.  ( U `  j ) ) ) )
2112, 20syl6bb 276 . . . . 5  |-  ( ( x  =  y  /\  t  =  s )  ->  ( A. i  e.  ( 1 ... N
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( U `  i ) ) )  <->  A. j  e.  (
1 ... N ) ( y `  j )  =  ( ( ( 1  -  s )  x.  ( Z `  j ) )  +  ( s  x.  ( U `  j )
) ) ) )
225, 21anbi12d 747 . . . 4  |-  ( ( x  =  y  /\  t  =  s )  ->  ( ( t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( U `  i ) ) ) )  <->  ( s  e.  ( 0 [,) +oo )  /\  A. j  e.  ( 1 ... N
) ( y `  j )  =  ( ( ( 1  -  s )  x.  ( Z `  j )
)  +  ( s  x.  ( U `  j ) ) ) ) ) )
233, 22anbi12d 747 . . 3  |-  ( ( x  =  y  /\  t  =  s )  ->  ( ( x  e.  D  /\  ( t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i )
)  +  ( t  x.  ( U `  i ) ) ) ) )  <->  ( y  e.  D  /\  (
s  e.  ( 0 [,) +oo )  /\  A. j  e.  ( 1 ... N ) ( y `  j )  =  ( ( ( 1  -  s )  x.  ( Z `  j ) )  +  ( s  x.  ( U `  j )
) ) ) ) ) )
2423cbvopabv 4722 . 2  |-  { <. x ,  t >.  |  ( x  e.  D  /\  ( t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i
)  =  ( ( ( 1  -  t
)  x.  ( Z `
 i ) )  +  ( t  x.  ( U `  i
) ) ) ) ) }  =  { <. y ,  s >.  |  ( y  e.  D  /\  ( s  e.  ( 0 [,) +oo )  /\  A. j  e.  ( 1 ... N
) ( y `  j )  =  ( ( ( 1  -  s )  x.  ( Z `  j )
)  +  ( s  x.  ( U `  j ) ) ) ) ) }
251, 24eqtri 2644 1  |-  F  =  { <. y ,  s
>.  |  ( y  e.  D  /\  (
s  e.  ( 0 [,) +oo )  /\  A. j  e.  ( 1 ... N ) ( y `  j )  =  ( ( ( 1  -  s )  x.  ( Z `  j ) )  +  ( s  x.  ( U `  j )
) ) ) ) }
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {copab 4712   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071    - cmin 10266   [,)cico 12177   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  axcontlem6  25849  axcontlem11  25854
  Copyright terms: Public domain W3C validator