MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem6 Structured version   Visualization version   Unicode version

Theorem axcontlem6 25849
Description: Lemma for axcont 25856. State the defining properties of the value of  F. (Contributed by Scott Fenton, 19-Jun-2013.)
Hypotheses
Ref Expression
axcontlem5.1  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
axcontlem5.2  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
Assertion
Ref Expression
axcontlem6  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D )  ->  (
( F `  P
)  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) ) ) )
Distinct variable groups:    t, D, x    i, p, t, x, N    P, i, t, x    U, i, p, t, x   
i, Z, p, t, x    i, F
Allowed substitution hints:    D( i, p)    P( p)    F( x, t, p)

Proof of Theorem axcontlem6
Dummy variables  s 
y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( F `
 P )  =  ( F `  P
)
2 axcontlem5.1 . . . 4  |-  D  =  { p  e.  ( EE `  N )  |  ( U  Btwn  <. Z ,  p >.  \/  p  Btwn  <. Z ,  U >. ) }
3 axcontlem5.2 . . . . 5  |-  F  =  { <. x ,  t
>.  |  ( x  e.  D  /\  (
t  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( x `  i )  =  ( ( ( 1  -  t )  x.  ( Z `  i ) )  +  ( t  x.  ( U `  i )
) ) ) ) }
43axcontlem1 25844 . . . 4  |-  F  =  { <. y ,  s
>.  |  ( y  e.  D  /\  (
s  e.  ( 0 [,) +oo )  /\  A. j  e.  ( 1 ... N ) ( y `  j )  =  ( ( ( 1  -  s )  x.  ( Z `  j ) )  +  ( s  x.  ( U `  j )
) ) ) ) }
52, 4axcontlem5 25848 . . 3  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D )  ->  (
( F `  P
)  =  ( F `
 P )  <->  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  A. j  e.  ( 1 ... N
) ( P `  j )  =  ( ( ( 1  -  ( F `  P
) )  x.  ( Z `  j )
)  +  ( ( F `  P )  x.  ( U `  j ) ) ) ) ) )
61, 5mpbii 223 . 2  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D )  ->  (
( F `  P
)  e.  ( 0 [,) +oo )  /\  A. j  e.  ( 1 ... N ) ( P `  j )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  j ) )  +  ( ( F `  P )  x.  ( U `  j )
) ) ) )
7 fveq2 6191 . . . . 5  |-  ( j  =  i  ->  ( P `  j )  =  ( P `  i ) )
8 fveq2 6191 . . . . . . 7  |-  ( j  =  i  ->  ( Z `  j )  =  ( Z `  i ) )
98oveq2d 6666 . . . . . 6  |-  ( j  =  i  ->  (
( 1  -  ( F `  P )
)  x.  ( Z `
 j ) )  =  ( ( 1  -  ( F `  P ) )  x.  ( Z `  i
) ) )
10 fveq2 6191 . . . . . . 7  |-  ( j  =  i  ->  ( U `  j )  =  ( U `  i ) )
1110oveq2d 6666 . . . . . 6  |-  ( j  =  i  ->  (
( F `  P
)  x.  ( U `
 j ) )  =  ( ( F `
 P )  x.  ( U `  i
) ) )
129, 11oveq12d 6668 . . . . 5  |-  ( j  =  i  ->  (
( ( 1  -  ( F `  P
) )  x.  ( Z `  j )
)  +  ( ( F `  P )  x.  ( U `  j ) ) )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) ) )
137, 12eqeq12d 2637 . . . 4  |-  ( j  =  i  ->  (
( P `  j
)  =  ( ( ( 1  -  ( F `  P )
)  x.  ( Z `
 j ) )  +  ( ( F `
 P )  x.  ( U `  j
) ) )  <->  ( P `  i )  =  ( ( ( 1  -  ( F `  P
) )  x.  ( Z `  i )
)  +  ( ( F `  P )  x.  ( U `  i ) ) ) ) )
1413cbvralv 3171 . . 3  |-  ( A. j  e.  ( 1 ... N ) ( P `  j )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  j ) )  +  ( ( F `  P )  x.  ( U `  j )
) )  <->  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  ( F `  P
) )  x.  ( Z `  i )
)  +  ( ( F `  P )  x.  ( U `  i ) ) ) )
1514anbi2i 730 . 2  |-  ( ( ( F `  P
)  e.  ( 0 [,) +oo )  /\  A. j  e.  ( 1 ... N ) ( P `  j )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  j ) )  +  ( ( F `  P )  x.  ( U `  j )
) ) )  <->  ( ( F `  P )  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N
) ( P `  i )  =  ( ( ( 1  -  ( F `  P
) )  x.  ( Z `  i )
)  +  ( ( F `  P )  x.  ( U `  i ) ) ) ) )
166, 15sylib 208 1  |-  ( ( ( ( N  e.  NN  /\  Z  e.  ( EE `  N
)  /\  U  e.  ( EE `  N ) )  /\  Z  =/= 
U )  /\  P  e.  D )  ->  (
( F `  P
)  e.  ( 0 [,) +oo )  /\  A. i  e.  ( 1 ... N ) ( P `  i )  =  ( ( ( 1  -  ( F `
 P ) )  x.  ( Z `  i ) )  +  ( ( F `  P )  x.  ( U `  i )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   <.cop 4183   class class class wbr 4653   {copab 4712   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071    - cmin 10266   NNcn 11020   [,)cico 12177   ...cfz 12326   EEcee 25768    Btwn cbtwn 25769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-z 11378  df-uz 11688  df-ico 12181  df-icc 12182  df-fz 12327  df-ee 25771  df-btwn 25772
This theorem is referenced by:  axcontlem7  25850  axcontlem8  25851
  Copyright terms: Public domain W3C validator