| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axrepndlem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for the Axiom of Replacement with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
| Ref | Expression |
|---|---|
| axrepndlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axrepndlem1 9414 |
. . 3
| |
| 2 | nfnae 2318 |
. . . . 5
| |
| 3 | nfnae 2318 |
. . . . 5
| |
| 4 | 2, 3 | nfan 1828 |
. . . 4
|
| 5 | nfnae 2318 |
. . . . . . 7
| |
| 6 | nfnae 2318 |
. . . . . . 7
| |
| 7 | 5, 6 | nfan 1828 |
. . . . . 6
|
| 8 | nfnae 2318 |
. . . . . . . 8
| |
| 9 | nfnae 2318 |
. . . . . . . 8
| |
| 10 | 8, 9 | nfan 1828 |
. . . . . . 7
|
| 11 | nfs1v 2437 |
. . . . . . . . 9
| |
| 12 | 11 | a1i 11 |
. . . . . . . 8
|
| 13 | nfcvf 2788 |
. . . . . . . . . 10
| |
| 14 | 13 | adantl 482 |
. . . . . . . . 9
|
| 15 | nfcvf 2788 |
. . . . . . . . . 10
| |
| 16 | 15 | adantr 481 |
. . . . . . . . 9
|
| 17 | 14, 16 | nfeqd 2772 |
. . . . . . . 8
|
| 18 | 12, 17 | nfimd 1823 |
. . . . . . 7
|
| 19 | 10, 18 | nfald 2165 |
. . . . . 6
|
| 20 | 7, 19 | nfexd 2167 |
. . . . 5
|
| 21 | nfcvd 2765 |
. . . . . . . 8
| |
| 22 | 14, 21 | nfeld 2773 |
. . . . . . 7
|
| 23 | nfv 1843 |
. . . . . . . 8
| |
| 24 | 21, 16 | nfeld 2773 |
. . . . . . . . 9
|
| 25 | 7, 12 | nfald 2165 |
. . . . . . . . 9
|
| 26 | 24, 25 | nfand 1826 |
. . . . . . . 8
|
| 27 | 23, 26 | nfexd 2167 |
. . . . . . 7
|
| 28 | 22, 27 | nfbid 1832 |
. . . . . 6
|
| 29 | 10, 28 | nfald 2165 |
. . . . 5
|
| 30 | 20, 29 | nfimd 1823 |
. . . 4
|
| 31 | nfcvd 2765 |
. . . . . . . . 9
| |
| 32 | nfcvf2 2789 |
. . . . . . . . . 10
| |
| 33 | 32 | adantr 481 |
. . . . . . . . 9
|
| 34 | 31, 33 | nfeqd 2772 |
. . . . . . . 8
|
| 35 | 7, 34 | nfan1 2068 |
. . . . . . 7
|
| 36 | nfcvd 2765 |
. . . . . . . . . 10
| |
| 37 | nfcvf2 2789 |
. . . . . . . . . . 11
| |
| 38 | 37 | adantl 482 |
. . . . . . . . . 10
|
| 39 | 36, 38 | nfeqd 2772 |
. . . . . . . . 9
|
| 40 | 10, 39 | nfan1 2068 |
. . . . . . . 8
|
| 41 | sbequ12r 2112 |
. . . . . . . . . 10
| |
| 42 | 41 | imbi1d 331 |
. . . . . . . . 9
|
| 43 | 42 | adantl 482 |
. . . . . . . 8
|
| 44 | 40, 43 | albid 2090 |
. . . . . . 7
|
| 45 | 35, 44 | exbid 2091 |
. . . . . 6
|
| 46 | elequ2 2004 |
. . . . . . . . 9
| |
| 47 | 46 | adantl 482 |
. . . . . . . 8
|
| 48 | elequ1 1997 |
. . . . . . . . . . . . 13
| |
| 49 | 48 | adantl 482 |
. . . . . . . . . . . 12
|
| 50 | 41 | adantl 482 |
. . . . . . . . . . . . 13
|
| 51 | 35, 50 | albid 2090 |
. . . . . . . . . . . 12
|
| 52 | 49, 51 | anbi12d 747 |
. . . . . . . . . . 11
|
| 53 | 52 | ex 450 |
. . . . . . . . . 10
|
| 54 | 4, 26, 53 | cbvexd 2278 |
. . . . . . . . 9
|
| 55 | 54 | adantr 481 |
. . . . . . . 8
|
| 56 | 47, 55 | bibi12d 335 |
. . . . . . 7
|
| 57 | 40, 56 | albid 2090 |
. . . . . 6
|
| 58 | 45, 57 | imbi12d 334 |
. . . . 5
|
| 59 | 58 | ex 450 |
. . . 4
|
| 60 | 4, 30, 59 | cbvexd 2278 |
. . 3
|
| 61 | 1, 60 | syl5ib 234 |
. 2
|
| 62 | 61 | imp 445 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 |
| This theorem is referenced by: axrepnd 9416 |
| Copyright terms: Public domain | W3C validator |