| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axrepnd | Structured version Visualization version Unicode version | ||
| Description: A version of the Axiom of Replacement with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.) |
| Ref | Expression |
|---|---|
| axrepnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axrepndlem2 9415 |
. . . 4
| |
| 2 | nfnae 2318 |
. . . . . . 7
| |
| 3 | nfnae 2318 |
. . . . . . 7
| |
| 4 | 2, 3 | nfan 1828 |
. . . . . 6
|
| 5 | nfnae 2318 |
. . . . . 6
| |
| 6 | 4, 5 | nfan 1828 |
. . . . 5
|
| 7 | nfnae 2318 |
. . . . . . . . 9
| |
| 8 | nfnae 2318 |
. . . . . . . . 9
| |
| 9 | 7, 8 | nfan 1828 |
. . . . . . . 8
|
| 10 | nfnae 2318 |
. . . . . . . 8
| |
| 11 | 9, 10 | nfan 1828 |
. . . . . . 7
|
| 12 | nfcvf 2788 |
. . . . . . . . . . . 12
| |
| 13 | 12 | adantl 482 |
. . . . . . . . . . 11
|
| 14 | nfcvf2 2789 |
. . . . . . . . . . . 12
| |
| 15 | 14 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 16 | 13, 15 | nfeld 2773 |
. . . . . . . . . 10
|
| 17 | 16 | nf5rd 2066 |
. . . . . . . . 9
|
| 18 | sp 2053 |
. . . . . . . . 9
| |
| 19 | 17, 18 | impbid1 215 |
. . . . . . . 8
|
| 20 | nfcvf2 2789 |
. . . . . . . . . . . . . 14
| |
| 21 | 20 | ad2antlr 763 |
. . . . . . . . . . . . 13
|
| 22 | nfcvf2 2789 |
. . . . . . . . . . . . . 14
| |
| 23 | 22 | adantl 482 |
. . . . . . . . . . . . 13
|
| 24 | 21, 23 | nfeld 2773 |
. . . . . . . . . . . 12
|
| 25 | 24 | nf5rd 2066 |
. . . . . . . . . . 11
|
| 26 | sp 2053 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | impbid1 215 |
. . . . . . . . . 10
|
| 28 | 27 | anbi1d 741 |
. . . . . . . . 9
|
| 29 | 6, 28 | exbid 2091 |
. . . . . . . 8
|
| 30 | 19, 29 | bibi12d 335 |
. . . . . . 7
|
| 31 | 11, 30 | albid 2090 |
. . . . . 6
|
| 32 | 31 | imbi2d 330 |
. . . . 5
|
| 33 | 6, 32 | exbid 2091 |
. . . 4
|
| 34 | 1, 33 | mpbid 222 |
. . 3
|
| 35 | 34 | exp31 630 |
. 2
|
| 36 | nfae 2316 |
. . . . 5
| |
| 37 | nd2 9410 |
. . . . . . 7
| |
| 38 | 37 | aecoms 2312 |
. . . . . 6
|
| 39 | nfae 2316 |
. . . . . . 7
| |
| 40 | nd3 9411 |
. . . . . . . 8
| |
| 41 | 40 | intnanrd 963 |
. . . . . . 7
|
| 42 | 39, 41 | nexd 2089 |
. . . . . 6
|
| 43 | 38, 42 | 2falsed 366 |
. . . . 5
|
| 44 | 36, 43 | alrimi 2082 |
. . . 4
|
| 45 | 44 | a1d 25 |
. . 3
|
| 46 | 19.8a 2052 |
. . 3
| |
| 47 | 45, 46 | syl 17 |
. 2
|
| 48 | nfae 2316 |
. . . . 5
| |
| 49 | nd4 9412 |
. . . . . 6
| |
| 50 | nfae 2316 |
. . . . . . 7
| |
| 51 | nd1 9409 |
. . . . . . . . 9
| |
| 52 | 51 | aecoms 2312 |
. . . . . . . 8
|
| 53 | 52 | intnanrd 963 |
. . . . . . 7
|
| 54 | 50, 53 | nexd 2089 |
. . . . . 6
|
| 55 | 49, 54 | 2falsed 366 |
. . . . 5
|
| 56 | 48, 55 | alrimi 2082 |
. . . 4
|
| 57 | 56 | a1d 25 |
. . 3
|
| 58 | 57, 46 | syl 17 |
. 2
|
| 59 | nfae 2316 |
. . . . 5
| |
| 60 | nd1 9409 |
. . . . . 6
| |
| 61 | nfae 2316 |
. . . . . . 7
| |
| 62 | nd2 9410 |
. . . . . . . . 9
| |
| 63 | 62 | aecoms 2312 |
. . . . . . . 8
|
| 64 | 63 | intnanrd 963 |
. . . . . . 7
|
| 65 | 61, 64 | nexd 2089 |
. . . . . 6
|
| 66 | 60, 65 | 2falsed 366 |
. . . . 5
|
| 67 | 59, 66 | alrimi 2082 |
. . . 4
|
| 68 | 67 | a1d 25 |
. . 3
|
| 69 | 68, 46 | syl 17 |
. 2
|
| 70 | 35, 47, 58, 69 | pm2.61iii 179 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: zfcndrep 9436 axrepprim 31579 |
| Copyright terms: Public domain | W3C validator |