| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axrepndlem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for the Axiom of Replacement with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.) |
| Ref | Expression |
|---|---|
| axrepndlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axrep2 4773 |
. 2
| |
| 2 | nfnae 2318 |
. . 3
| |
| 3 | nfnae 2318 |
. . . . 5
| |
| 4 | nfnae 2318 |
. . . . . 6
| |
| 5 | nfs1v 2437 |
. . . . . . . 8
| |
| 6 | 5 | a1i 11 |
. . . . . . 7
|
| 7 | nfcvd 2765 |
. . . . . . . 8
| |
| 8 | nfcvf2 2789 |
. . . . . . . 8
| |
| 9 | 7, 8 | nfeqd 2772 |
. . . . . . 7
|
| 10 | 6, 9 | nfimd 1823 |
. . . . . 6
|
| 11 | sbequ12r 2112 |
. . . . . . . 8
| |
| 12 | equequ1 1952 |
. . . . . . . 8
| |
| 13 | 11, 12 | imbi12d 334 |
. . . . . . 7
|
| 14 | 13 | a1i 11 |
. . . . . 6
|
| 15 | 4, 10, 14 | cbvald 2277 |
. . . . 5
|
| 16 | 3, 15 | exbid 2091 |
. . . 4
|
| 17 | nfvd 1844 |
. . . . . 6
| |
| 18 | 8 | nfcrd 2771 |
. . . . . . . 8
|
| 19 | 3, 6 | nfald 2165 |
. . . . . . . 8
|
| 20 | 18, 19 | nfand 1826 |
. . . . . . 7
|
| 21 | 2, 20 | nfexd 2167 |
. . . . . 6
|
| 22 | 17, 21 | nfbid 1832 |
. . . . 5
|
| 23 | elequ1 1997 |
. . . . . . . 8
| |
| 24 | 23 | adantl 482 |
. . . . . . 7
|
| 25 | nfeqf2 2297 |
. . . . . . . . . . 11
| |
| 26 | 3, 25 | nfan1 2068 |
. . . . . . . . . 10
|
| 27 | 11 | adantl 482 |
. . . . . . . . . 10
|
| 28 | 26, 27 | albid 2090 |
. . . . . . . . 9
|
| 29 | 28 | anbi2d 740 |
. . . . . . . 8
|
| 30 | 29 | exbidv 1850 |
. . . . . . 7
|
| 31 | 24, 30 | bibi12d 335 |
. . . . . 6
|
| 32 | 31 | ex 450 |
. . . . 5
|
| 33 | 4, 22, 32 | cbvald 2277 |
. . . 4
|
| 34 | 16, 33 | imbi12d 334 |
. . 3
|
| 35 | 2, 34 | exbid 2091 |
. 2
|
| 36 | 1, 35 | mpbii 223 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 |
| This theorem is referenced by: axrepndlem2 9415 |
| Copyright terms: Public domain | W3C validator |