Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mpt2mptALT Structured version   Visualization version   Unicode version

Theorem bj-mpt2mptALT 33072
Description: Alternate proof of mpt2mpt 6752. (Contributed by BJ, 30-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bj-mpt2mptALT.1  |-  ( z  =  <. x ,  y
>.  ->  C  =  D )
Assertion
Ref Expression
bj-mpt2mptALT  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y   
z, D
Allowed substitution hints:    C( z)    D( x, y)

Proof of Theorem bj-mpt2mptALT
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 elxp2 5132 . . . . 5  |-  ( z  e.  ( A  X.  B )  <->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >.
)
21anbi1i 731 . . . 4  |-  ( ( z  e.  ( A  X.  B )  /\  t  =  C )  <->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >.  /\  t  =  C ) )
3 r19.41v 3089 . . . 4  |-  ( E. x  e.  A  ( E. y  e.  B  z  =  <. x ,  y >.  /\  t  =  C )  <->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y
>.  /\  t  =  C ) )
4 r19.41v 3089 . . . . . 6  |-  ( E. y  e.  B  ( z  =  <. x ,  y >.  /\  t  =  C )  <->  ( E. y  e.  B  z  =  <. x ,  y
>.  /\  t  =  C ) )
5 bj-mpt2mptALT.1 . . . . . . . . 9  |-  ( z  =  <. x ,  y
>.  ->  C  =  D )
65eqeq2d 2632 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( t  =  C  <->  t  =  D ) )
76pm5.32i 669 . . . . . . 7  |-  ( ( z  =  <. x ,  y >.  /\  t  =  C )  <->  ( z  =  <. x ,  y
>.  /\  t  =  D ) )
87rexbii 3041 . . . . . 6  |-  ( E. y  e.  B  ( z  =  <. x ,  y >.  /\  t  =  C )  <->  E. y  e.  B  ( z  =  <. x ,  y
>.  /\  t  =  D ) )
94, 8bitr3i 266 . . . . 5  |-  ( ( E. y  e.  B  z  =  <. x ,  y >.  /\  t  =  C )  <->  E. y  e.  B  ( z  =  <. x ,  y
>.  /\  t  =  D ) )
109rexbii 3041 . . . 4  |-  ( E. x  e.  A  ( E. y  e.  B  z  =  <. x ,  y >.  /\  t  =  C )  <->  E. x  e.  A  E. y  e.  B  ( z  =  <. x ,  y
>.  /\  t  =  D ) )
112, 3, 103bitr2i 288 . . 3  |-  ( ( z  e.  ( A  X.  B )  /\  t  =  C )  <->  E. x  e.  A  E. y  e.  B  (
z  =  <. x ,  y >.  /\  t  =  D ) )
1211opabbii 4717 . 2  |-  { <. z ,  t >.  |  ( z  e.  ( A  X.  B )  /\  t  =  C ) }  =  { <. z ,  t >.  |  E. x  e.  A  E. y  e.  B  (
z  =  <. x ,  y >.  /\  t  =  D ) }
13 df-mpt 4730 . 2  |-  ( z  e.  ( A  X.  B )  |->  C )  =  { <. z ,  t >.  |  ( z  e.  ( A  X.  B )  /\  t  =  C ) }
14 bj-dfmpt2a 33071 . 2  |-  ( x  e.  A ,  y  e.  B  |->  D )  =  { <. z ,  t >.  |  E. x  e.  A  E. y  e.  B  (
z  =  <. x ,  y >.  /\  t  =  D ) }
1512, 13, 143eqtr4i 2654 1  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   <.cop 4183   {copab 4712    |-> cmpt 4729    X. cxp 5112    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-mpt 4730  df-xp 5120  df-oprab 6654  df-mpt2 6655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator