Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dfmpt2a Structured version   Visualization version   Unicode version

Theorem bj-dfmpt2a 33071
Description: An equivalent definition of df-mpt2 6655. (Contributed by BJ, 30-Dec-2020.)
Assertion
Ref Expression
bj-dfmpt2a  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. s ,  t >.  |  E. x  e.  A  E. y  e.  B  (
s  =  <. x ,  y >.  /\  t  =  C ) }
Distinct variable groups:    x, y,
s, t    A, s,
t    B, s, t    C, s, t    y, A
Allowed substitution hints:    A( x)    B( x, y)    C( x, y)

Proof of Theorem bj-dfmpt2a
StepHypRef Expression
1 df-mpt2 6655 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  t
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  t  =  C
) }
2 dfoprab2 6701 . 2  |-  { <. <.
x ,  y >. ,  t >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  t  =  C ) }  =  { <. s ,  t
>.  |  E. x E. y ( s  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  t  =  C ) ) }
3 ancom 466 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  t  =  C )  <->  ( t  =  C  /\  (
x  e.  A  /\  y  e.  B )
) )
43anbi2i 730 . . . . . . . 8  |-  ( ( s  =  <. x ,  y >.  /\  (
( x  e.  A  /\  y  e.  B
)  /\  t  =  C ) )  <->  ( s  =  <. x ,  y
>.  /\  ( t  =  C  /\  ( x  e.  A  /\  y  e.  B ) ) ) )
5 anass 681 . . . . . . . 8  |-  ( ( ( s  =  <. x ,  y >.  /\  t  =  C )  /\  (
x  e.  A  /\  y  e.  B )
)  <->  ( s  = 
<. x ,  y >.  /\  ( t  =  C  /\  ( x  e.  A  /\  y  e.  B ) ) ) )
6 an13 840 . . . . . . . 8  |-  ( ( ( s  =  <. x ,  y >.  /\  t  =  C )  /\  (
x  e.  A  /\  y  e.  B )
)  <->  ( y  e.  B  /\  ( x  e.  A  /\  (
s  =  <. x ,  y >.  /\  t  =  C ) ) ) )
74, 5, 63bitr2i 288 . . . . . . 7  |-  ( ( s  =  <. x ,  y >.  /\  (
( x  e.  A  /\  y  e.  B
)  /\  t  =  C ) )  <->  ( y  e.  B  /\  (
x  e.  A  /\  ( s  =  <. x ,  y >.  /\  t  =  C ) ) ) )
87exbii 1774 . . . . . 6  |-  ( E. y ( s  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  t  =  C ) )  <->  E. y
( y  e.  B  /\  ( x  e.  A  /\  ( s  =  <. x ,  y >.  /\  t  =  C ) ) ) )
9 df-rex 2918 . . . . . 6  |-  ( E. y  e.  B  ( x  e.  A  /\  ( s  =  <. x ,  y >.  /\  t  =  C ) )  <->  E. y
( y  e.  B  /\  ( x  e.  A  /\  ( s  =  <. x ,  y >.  /\  t  =  C ) ) ) )
10 r19.42v 3092 . . . . . 6  |-  ( E. y  e.  B  ( x  e.  A  /\  ( s  =  <. x ,  y >.  /\  t  =  C ) )  <->  ( x  e.  A  /\  E. y  e.  B  ( s  =  <. x ,  y
>.  /\  t  =  C ) ) )
118, 9, 103bitr2i 288 . . . . 5  |-  ( E. y ( s  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  t  =  C ) )  <->  ( x  e.  A  /\  E. y  e.  B  ( s  =  <. x ,  y
>.  /\  t  =  C ) ) )
1211exbii 1774 . . . 4  |-  ( E. x E. y ( s  =  <. x ,  y >.  /\  (
( x  e.  A  /\  y  e.  B
)  /\  t  =  C ) )  <->  E. x
( x  e.  A  /\  E. y  e.  B  ( s  =  <. x ,  y >.  /\  t  =  C ) ) )
13 df-rex 2918 . . . 4  |-  ( E. x  e.  A  E. y  e.  B  (
s  =  <. x ,  y >.  /\  t  =  C )  <->  E. x
( x  e.  A  /\  E. y  e.  B  ( s  =  <. x ,  y >.  /\  t  =  C ) ) )
1412, 13bitr4i 267 . . 3  |-  ( E. x E. y ( s  =  <. x ,  y >.  /\  (
( x  e.  A  /\  y  e.  B
)  /\  t  =  C ) )  <->  E. x  e.  A  E. y  e.  B  ( s  =  <. x ,  y
>.  /\  t  =  C ) )
1514opabbii 4717 . 2  |-  { <. s ,  t >.  |  E. x E. y ( s  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  t  =  C ) ) }  =  { <. s ,  t >.  |  E. x  e.  A  E. y  e.  B  (
s  =  <. x ,  y >.  /\  t  =  C ) }
161, 2, 153eqtri 2648 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. s ,  t >.  |  E. x  e.  A  E. y  e.  B  (
s  =  <. x ,  y >.  /\  t  =  C ) }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   <.cop 4183   {copab 4712   {coprab 6651    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  bj-mpt2mptALT  33072
  Copyright terms: Public domain W3C validator