| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-notalbii | Structured version Visualization version Unicode version | ||
| Description: Equivalence of universal quantification of negation of equivalent formulas. Shortens ab0 3951 (103>94), ballotlem2 30550 (2655>2648), bnj1143 30861 (522>519), hausdiag 21448 (2119>2104). (Contributed by BJ, 17-Jul-2021.) |
| Ref | Expression |
|---|---|
| bj-notalbii.1 |
|
| Ref | Expression |
|---|---|
| bj-notalbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-notalbii.1 |
. . 3
| |
| 2 | 1 | notbii 310 |
. 2
|
| 3 | 2 | albii 1747 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |