Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-notalbii Structured version   Visualization version   Unicode version

Theorem bj-notalbii 32598
Description: Equivalence of universal quantification of negation of equivalent formulas. Shortens ab0 3951 (103>94), ballotlem2 30550 (2655>2648), bnj1143 30861 (522>519), hausdiag 21448 (2119>2104). (Contributed by BJ, 17-Jul-2021.)
Hypothesis
Ref Expression
bj-notalbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
bj-notalbii  |-  ( A. x  -.  ph  <->  A. x  -.  ps )

Proof of Theorem bj-notalbii
StepHypRef Expression
1 bj-notalbii.1 . . 3  |-  ( ph  <->  ps )
21notbii 310 . 2  |-  ( -. 
ph 
<->  -.  ps )
32albii 1747 1  |-  ( A. x  -.  ph  <->  A. x  -.  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator