Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem2 Structured version   Visualization version   Unicode version

Theorem ballotlem2 30550
Description: The probability that the first vote picked in a count is a B. (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
Assertion
Ref Expression
ballotlem2  |-  ( P `
 { c  e.  O  |  -.  1  e.  c } )  =  ( N  /  ( M  +  N )
)
Distinct variable groups:    M, c    N, c    O, c, x
Allowed substitution hints:    P( x, c)    M( x)    N( x)

Proof of Theorem ballotlem2
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . . . 5  |-  { c  e.  O  |  -.  1  e.  c }  C_  O
2 ballotth.m . . . . . . 7  |-  M  e.  NN
3 ballotth.n . . . . . . 7  |-  N  e.  NN
4 ballotth.o . . . . . . 7  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
52, 3, 4ballotlemoex 30547 . . . . . 6  |-  O  e. 
_V
65elpw2 4828 . . . . 5  |-  ( { c  e.  O  |  -.  1  e.  c }  e.  ~P O  <->  { c  e.  O  |  -.  1  e.  c }  C_  O )
71, 6mpbir 221 . . . 4  |-  { c  e.  O  |  -.  1  e.  c }  e.  ~P O
8 fveq2 6191 . . . . . 6  |-  ( x  =  { c  e.  O  |  -.  1  e.  c }  ->  ( # `
 x )  =  ( # `  {
c  e.  O  |  -.  1  e.  c } ) )
98oveq1d 6665 . . . . 5  |-  ( x  =  { c  e.  O  |  -.  1  e.  c }  ->  (
( # `  x )  /  ( # `  O
) )  =  ( ( # `  {
c  e.  O  |  -.  1  e.  c } )  /  ( # `
 O ) ) )
10 ballotth.p . . . . 5  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
11 ovex 6678 . . . . 5  |-  ( (
# `  { c  e.  O  |  -.  1  e.  c }
)  /  ( # `  O ) )  e. 
_V
129, 10, 11fvmpt 6282 . . . 4  |-  ( { c  e.  O  |  -.  1  e.  c }  e.  ~P O  ->  ( P `  {
c  e.  O  |  -.  1  e.  c } )  =  ( ( # `  {
c  e.  O  |  -.  1  e.  c } )  /  ( # `
 O ) ) )
137, 12ax-mp 5 . . 3  |-  ( P `
 { c  e.  O  |  -.  1  e.  c } )  =  ( ( # `  {
c  e.  O  |  -.  1  e.  c } )  /  ( # `
 O ) )
14 an32 839 . . . . . . . . 9  |-  ( ( ( c  e.  ~P ( 1 ... ( M  +  N )
)  /\  -.  1  e.  c )  /\  ( # `
 c )  =  M )  <->  ( (
c  e.  ~P (
1 ... ( M  +  N ) )  /\  ( # `  c )  =  M )  /\  -.  1  e.  c
) )
15 2eluzge1 11734 . . . . . . . . . . . . . . 15  |-  2  e.  ( ZZ>= `  1 )
16 fzss1 12380 . . . . . . . . . . . . . . 15  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( 2 ... ( M  +  N ) )  C_  ( 1 ... ( M  +  N )
) )
1715, 16ax-mp 5 . . . . . . . . . . . . . 14  |-  ( 2 ... ( M  +  N ) )  C_  ( 1 ... ( M  +  N )
)
18 sspwb 4917 . . . . . . . . . . . . . 14  |-  ( ( 2 ... ( M  +  N ) ) 
C_  ( 1 ... ( M  +  N
) )  <->  ~P (
2 ... ( M  +  N ) )  C_  ~P ( 1 ... ( M  +  N )
) )
1917, 18mpbi 220 . . . . . . . . . . . . 13  |-  ~P (
2 ... ( M  +  N ) )  C_  ~P ( 1 ... ( M  +  N )
)
2019sseli 3599 . . . . . . . . . . . 12  |-  ( c  e.  ~P ( 2 ... ( M  +  N ) )  -> 
c  e.  ~P (
1 ... ( M  +  N ) ) )
21 1lt2 11194 . . . . . . . . . . . . . . . . 17  |-  1  <  2
22 1re 10039 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
23 2re 11090 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
2422, 23ltnlei 10158 . . . . . . . . . . . . . . . . 17  |-  ( 1  <  2  <->  -.  2  <_  1 )
2521, 24mpbi 220 . . . . . . . . . . . . . . . 16  |-  -.  2  <_  1
26 elfzle1 12344 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  ( 2 ... ( M  +  N
) )  ->  2  <_  1 )
2725, 26mto 188 . . . . . . . . . . . . . . 15  |-  -.  1  e.  ( 2 ... ( M  +  N )
)
28 elelpwi 4171 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  c  /\  c  e.  ~P (
2 ... ( M  +  N ) ) )  ->  1  e.  ( 2 ... ( M  +  N ) ) )
2927, 28mto 188 . . . . . . . . . . . . . 14  |-  -.  (
1  e.  c  /\  c  e.  ~P (
2 ... ( M  +  N ) ) )
30 ancom 466 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  c  /\  c  e.  ~P (
2 ... ( M  +  N ) ) )  <-> 
( c  e.  ~P ( 2 ... ( M  +  N )
)  /\  1  e.  c ) )
3129, 30mtbi 312 . . . . . . . . . . . . 13  |-  -.  (
c  e.  ~P (
2 ... ( M  +  N ) )  /\  1  e.  c )
3231imnani 439 . . . . . . . . . . . 12  |-  ( c  e.  ~P ( 2 ... ( M  +  N ) )  ->  -.  1  e.  c
)
3320, 32jca 554 . . . . . . . . . . 11  |-  ( c  e.  ~P ( 2 ... ( M  +  N ) )  -> 
( c  e.  ~P ( 1 ... ( M  +  N )
)  /\  -.  1  e.  c ) )
34 ssin 3835 . . . . . . . . . . . . 13  |-  ( ( c  C_  ( 1 ... ( M  +  N ) )  /\  c  C_  { i  |  -.  i  =  1 } )  <->  c  C_  ( ( 1 ... ( M  +  N
) )  i^i  {
i  |  -.  i  =  1 } ) )
35 1le2 11241 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  <_  2
36 1p1e2 11134 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  +  1 )  =  2
37 nnge1 11046 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( M  e.  NN  ->  1  <_  M )
382, 37ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  <_  M
39 nnge1 11046 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN  ->  1  <_  N )
403, 39ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  <_  N
412nnrei 11029 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  M  e.  RR
423nnrei 11029 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  N  e.  RR
4322, 22, 41, 42le2addi 10591 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1  <_  M  /\  1  <_  N )  -> 
( 1  +  1 )  <_  ( M  +  N ) )
4438, 40, 43mp2an 708 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  +  1 )  <_ 
( M  +  N
)
4536, 44eqbrtrri 4676 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  <_  ( M  +  N
)
4641, 42readdcli 10053 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  +  N )  e.  RR
4722, 23, 46letri 10166 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  <_  2  /\  2  <_  ( M  +  N ) )  -> 
1  <_  ( M  +  N ) )
4835, 45, 47mp2an 708 . . . . . . . . . . . . . . . . . . . . 21  |-  1  <_  ( M  +  N
)
49 1z 11407 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  ZZ
50 nnaddcl 11042 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
512, 3, 50mp2an 708 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  +  N )  e.  NN
5251nnzi 11401 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  +  N )  e.  ZZ
53 eluz 11701 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  ZZ  /\  ( M  +  N
)  e.  ZZ )  ->  ( ( M  +  N )  e.  ( ZZ>= `  1 )  <->  1  <_  ( M  +  N ) ) )
5449, 52, 53mp2an 708 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  +  N )  e.  ( ZZ>= `  1
)  <->  1  <_  ( M  +  N )
)
5548, 54mpbir 221 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  +  N )  e.  ( ZZ>= `  1 )
56 elfzp12 12419 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  +  N )  e.  ( ZZ>= `  1
)  ->  ( i  e.  ( 1 ... ( M  +  N )
)  <->  ( i  =  1  \/  i  e.  ( ( 1  +  1 ) ... ( M  +  N )
) ) ) )
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 1 ... ( M  +  N
) )  <->  ( i  =  1  \/  i  e.  ( ( 1  +  1 ) ... ( M  +  N )
) ) )
5857biimpi 206 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ( 1 ... ( M  +  N
) )  ->  (
i  =  1  \/  i  e.  ( ( 1  +  1 ) ... ( M  +  N ) ) ) )
5958orcanai 952 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 1 ... ( M  +  N ) )  /\  -.  i  =  1
)  ->  i  e.  ( ( 1  +  1 ) ... ( M  +  N )
) )
6036oveq1i 6660 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  +  1 ) ... ( M  +  N ) )  =  ( 2 ... ( M  +  N )
)
6159, 60syl6eleq 2711 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 1 ... ( M  +  N ) )  /\  -.  i  =  1
)  ->  i  e.  ( 2 ... ( M  +  N )
) )
6261ss2abi 3674 . . . . . . . . . . . . . . 15  |-  { i  |  ( i  e.  ( 1 ... ( M  +  N )
)  /\  -.  i  =  1 ) } 
C_  { i  |  i  e.  ( 2 ... ( M  +  N ) ) }
63 inab 3895 . . . . . . . . . . . . . . . 16  |-  ( { i  |  i  e.  ( 1 ... ( M  +  N )
) }  i^i  {
i  |  -.  i  =  1 } )  =  { i  |  ( i  e.  ( 1 ... ( M  +  N ) )  /\  -.  i  =  1 ) }
64 abid2 2745 . . . . . . . . . . . . . . . . 17  |-  { i  |  i  e.  ( 1 ... ( M  +  N ) ) }  =  ( 1 ... ( M  +  N ) )
6564ineq1i 3810 . . . . . . . . . . . . . . . 16  |-  ( { i  |  i  e.  ( 1 ... ( M  +  N )
) }  i^i  {
i  |  -.  i  =  1 } )  =  ( ( 1 ... ( M  +  N ) )  i^i 
{ i  |  -.  i  =  1 }
)
6663, 65eqtr3i 2646 . . . . . . . . . . . . . . 15  |-  { i  |  ( i  e.  ( 1 ... ( M  +  N )
)  /\  -.  i  =  1 ) }  =  ( ( 1 ... ( M  +  N ) )  i^i 
{ i  |  -.  i  =  1 }
)
67 abid2 2745 . . . . . . . . . . . . . . 15  |-  { i  |  i  e.  ( 2 ... ( M  +  N ) ) }  =  ( 2 ... ( M  +  N ) )
6862, 66, 673sstr3i 3643 . . . . . . . . . . . . . 14  |-  ( ( 1 ... ( M  +  N ) )  i^i  { i  |  -.  i  =  1 } )  C_  (
2 ... ( M  +  N ) )
69 sstr 3611 . . . . . . . . . . . . . 14  |-  ( ( c  C_  ( (
1 ... ( M  +  N ) )  i^i 
{ i  |  -.  i  =  1 }
)  /\  ( (
1 ... ( M  +  N ) )  i^i 
{ i  |  -.  i  =  1 }
)  C_  ( 2 ... ( M  +  N ) ) )  ->  c  C_  (
2 ... ( M  +  N ) ) )
7068, 69mpan2 707 . . . . . . . . . . . . 13  |-  ( c 
C_  ( ( 1 ... ( M  +  N ) )  i^i 
{ i  |  -.  i  =  1 }
)  ->  c  C_  ( 2 ... ( M  +  N )
) )
7134, 70sylbi 207 . . . . . . . . . . . 12  |-  ( ( c  C_  ( 1 ... ( M  +  N ) )  /\  c  C_  { i  |  -.  i  =  1 } )  ->  c  C_  ( 2 ... ( M  +  N )
) )
72 selpw 4165 . . . . . . . . . . . . 13  |-  ( c  e.  ~P ( 1 ... ( M  +  N ) )  <->  c  C_  ( 1 ... ( M  +  N )
) )
73 ssab 3672 . . . . . . . . . . . . . 14  |-  ( c 
C_  { i  |  -.  i  =  1 }  <->  A. i ( i  e.  c  ->  -.  i  =  1 ) )
74 df-ex 1705 . . . . . . . . . . . . . . . . 17  |-  ( E. i ( i  =  1  /\  i  e.  c )  <->  -.  A. i  -.  ( i  =  1  /\  i  e.  c ) )
7574bicomi 214 . . . . . . . . . . . . . . . 16  |-  ( -. 
A. i  -.  (
i  =  1  /\  i  e.  c )  <->  E. i ( i  =  1  /\  i  e.  c ) )
7675con1bii 346 . . . . . . . . . . . . . . 15  |-  ( -. 
E. i ( i  =  1  /\  i  e.  c )  <->  A. i  -.  ( i  =  1  /\  i  e.  c ) )
77 df-clel 2618 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  c  <->  E. i
( i  =  1  /\  i  e.  c ) )
7877notbii 310 . . . . . . . . . . . . . . 15  |-  ( -.  1  e.  c  <->  -.  E. i
( i  =  1  /\  i  e.  c ) )
79 imnang 1769 . . . . . . . . . . . . . . . 16  |-  ( A. i ( i  e.  c  ->  -.  i  =  1 )  <->  A. i  -.  ( i  e.  c  /\  i  =  1 ) )
80 ancom 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  =  1  /\  i  e.  c )  <-> 
( i  e.  c  /\  i  =  1 ) )
8180notbii 310 . . . . . . . . . . . . . . . . 17  |-  ( -.  ( i  =  1  /\  i  e.  c )  <->  -.  ( i  e.  c  /\  i  =  1 ) )
8281albii 1747 . . . . . . . . . . . . . . . 16  |-  ( A. i  -.  ( i  =  1  /\  i  e.  c )  <->  A. i  -.  ( i  e.  c  /\  i  =  1 ) )
8379, 82bitr4i 267 . . . . . . . . . . . . . . 15  |-  ( A. i ( i  e.  c  ->  -.  i  =  1 )  <->  A. i  -.  ( i  =  1  /\  i  e.  c ) )
8476, 78, 833bitr4ri 293 . . . . . . . . . . . . . 14  |-  ( A. i ( i  e.  c  ->  -.  i  =  1 )  <->  -.  1  e.  c )
8573, 84bitr2i 265 . . . . . . . . . . . . 13  |-  ( -.  1  e.  c  <->  c  C_  { i  |  -.  i  =  1 } )
8672, 85anbi12i 733 . . . . . . . . . . . 12  |-  ( ( c  e.  ~P (
1 ... ( M  +  N ) )  /\  -.  1  e.  c
)  <->  ( c  C_  ( 1 ... ( M  +  N )
)  /\  c  C_  { i  |  -.  i  =  1 } ) )
87 selpw 4165 . . . . . . . . . . . 12  |-  ( c  e.  ~P ( 2 ... ( M  +  N ) )  <->  c  C_  ( 2 ... ( M  +  N )
) )
8871, 86, 873imtr4i 281 . . . . . . . . . . 11  |-  ( ( c  e.  ~P (
1 ... ( M  +  N ) )  /\  -.  1  e.  c
)  ->  c  e.  ~P ( 2 ... ( M  +  N )
) )
8933, 88impbii 199 . . . . . . . . . 10  |-  ( c  e.  ~P ( 2 ... ( M  +  N ) )  <->  ( c  e.  ~P ( 1 ... ( M  +  N
) )  /\  -.  1  e.  c )
)
9089anbi1i 731 . . . . . . . . 9  |-  ( ( c  e.  ~P (
2 ... ( M  +  N ) )  /\  ( # `  c )  =  M )  <->  ( (
c  e.  ~P (
1 ... ( M  +  N ) )  /\  -.  1  e.  c
)  /\  ( # `  c
)  =  M ) )
914rabeq2i 3197 . . . . . . . . . 10  |-  ( c  e.  O  <->  ( c  e.  ~P ( 1 ... ( M  +  N
) )  /\  ( # `
 c )  =  M ) )
9291anbi1i 731 . . . . . . . . 9  |-  ( ( c  e.  O  /\  -.  1  e.  c
)  <->  ( ( c  e.  ~P ( 1 ... ( M  +  N ) )  /\  ( # `  c )  =  M )  /\  -.  1  e.  c
) )
9314, 90, 923bitr4i 292 . . . . . . . 8  |-  ( ( c  e.  ~P (
2 ... ( M  +  N ) )  /\  ( # `  c )  =  M )  <->  ( c  e.  O  /\  -.  1  e.  c ) )
9493abbii 2739 . . . . . . 7  |-  { c  |  ( c  e. 
~P ( 2 ... ( M  +  N
) )  /\  ( # `
 c )  =  M ) }  =  { c  |  ( c  e.  O  /\  -.  1  e.  c
) }
95 df-rab 2921 . . . . . . 7  |-  { c  e.  ~P ( 2 ... ( M  +  N ) )  |  ( # `  c
)  =  M }  =  { c  |  ( c  e.  ~P (
2 ... ( M  +  N ) )  /\  ( # `  c )  =  M ) }
96 df-rab 2921 . . . . . . 7  |-  { c  e.  O  |  -.  1  e.  c }  =  { c  |  ( c  e.  O  /\  -.  1  e.  c
) }
9794, 95, 963eqtr4i 2654 . . . . . 6  |-  { c  e.  ~P ( 2 ... ( M  +  N ) )  |  ( # `  c
)  =  M }  =  { c  e.  O  |  -.  1  e.  c }
9897fveq2i 6194 . . . . 5  |-  ( # `  { c  e.  ~P ( 2 ... ( M  +  N )
)  |  ( # `  c )  =  M } )  =  (
# `  { c  e.  O  |  -.  1  e.  c }
)
99 fzfi 12771 . . . . . . 7  |-  ( 2 ... ( M  +  N ) )  e. 
Fin
1002nnzi 11401 . . . . . . 7  |-  M  e.  ZZ
101 hashbc 13237 . . . . . . 7  |-  ( ( ( 2 ... ( M  +  N )
)  e.  Fin  /\  M  e.  ZZ )  ->  ( ( # `  (
2 ... ( M  +  N ) ) )  _C  M )  =  ( # `  {
c  e.  ~P (
2 ... ( M  +  N ) )  |  ( # `  c
)  =  M }
) )
10299, 100, 101mp2an 708 . . . . . 6  |-  ( (
# `  ( 2 ... ( M  +  N
) ) )  _C  M )  =  (
# `  { c  e.  ~P ( 2 ... ( M  +  N
) )  |  (
# `  c )  =  M } )
103 2z 11409 . . . . . . . . . . . 12  |-  2  e.  ZZ
104103eluz1i 11695 . . . . . . . . . . 11  |-  ( ( M  +  N )  e.  ( ZZ>= `  2
)  <->  ( ( M  +  N )  e.  ZZ  /\  2  <_ 
( M  +  N
) ) )
10552, 45, 104mpbir2an 955 . . . . . . . . . 10  |-  ( M  +  N )  e.  ( ZZ>= `  2 )
106 hashfz 13214 . . . . . . . . . 10  |-  ( ( M  +  N )  e.  ( ZZ>= `  2
)  ->  ( # `  (
2 ... ( M  +  N ) ) )  =  ( ( ( M  +  N )  -  2 )  +  1 ) )
107105, 106ax-mp 5 . . . . . . . . 9  |-  ( # `  ( 2 ... ( M  +  N )
) )  =  ( ( ( M  +  N )  -  2 )  +  1 )
1082nncni 11030 . . . . . . . . . . 11  |-  M  e.  CC
1093nncni 11030 . . . . . . . . . . 11  |-  N  e.  CC
110108, 109addcli 10044 . . . . . . . . . 10  |-  ( M  +  N )  e.  CC
111 2cn 11091 . . . . . . . . . 10  |-  2  e.  CC
112 ax-1cn 9994 . . . . . . . . . 10  |-  1  e.  CC
113 subadd23 10293 . . . . . . . . . 10  |-  ( ( ( M  +  N
)  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( ( M  +  N )  -  2 )  +  1 )  =  ( ( M  +  N )  +  ( 1  -  2 ) ) )
114110, 111, 112, 113mp3an 1424 . . . . . . . . 9  |-  ( ( ( M  +  N
)  -  2 )  +  1 )  =  ( ( M  +  N )  +  ( 1  -  2 ) )
115111, 112negsubdi2i 10367 . . . . . . . . . . 11  |-  -u (
2  -  1 )  =  ( 1  -  2 )
116 2m1e1 11135 . . . . . . . . . . . 12  |-  ( 2  -  1 )  =  1
117116negeqi 10274 . . . . . . . . . . 11  |-  -u (
2  -  1 )  =  -u 1
118115, 117eqtr3i 2646 . . . . . . . . . 10  |-  ( 1  -  2 )  = 
-u 1
119118oveq2i 6661 . . . . . . . . 9  |-  ( ( M  +  N )  +  ( 1  -  2 ) )  =  ( ( M  +  N )  +  -u
1 )
120107, 114, 1193eqtri 2648 . . . . . . . 8  |-  ( # `  ( 2 ... ( M  +  N )
) )  =  ( ( M  +  N
)  +  -u 1
)
121110, 112negsubi 10359 . . . . . . . 8  |-  ( ( M  +  N )  +  -u 1 )  =  ( ( M  +  N )  -  1 )
122120, 121eqtri 2644 . . . . . . 7  |-  ( # `  ( 2 ... ( M  +  N )
) )  =  ( ( M  +  N
)  -  1 )
123122oveq1i 6660 . . . . . 6  |-  ( (
# `  ( 2 ... ( M  +  N
) ) )  _C  M )  =  ( ( ( M  +  N )  -  1 )  _C  M )
124102, 123eqtr3i 2646 . . . . 5  |-  ( # `  { c  e.  ~P ( 2 ... ( M  +  N )
)  |  ( # `  c )  =  M } )  =  ( ( ( M  +  N )  -  1 )  _C  M )
12598, 124eqtr3i 2646 . . . 4  |-  ( # `  { c  e.  O  |  -.  1  e.  c } )  =  ( ( ( M  +  N )  -  1 )  _C  M )
1262, 3, 4ballotlem1 30548 . . . 4  |-  ( # `  O )  =  ( ( M  +  N
)  _C  M )
127125, 126oveq12i 6662 . . 3  |-  ( (
# `  { c  e.  O  |  -.  1  e.  c }
)  /  ( # `  O ) )  =  ( ( ( ( M  +  N )  -  1 )  _C  M )  /  (
( M  +  N
)  _C  M ) )
12813, 127eqtri 2644 . 2  |-  ( P `
 { c  e.  O  |  -.  1  e.  c } )  =  ( ( ( ( M  +  N )  -  1 )  _C  M )  /  (
( M  +  N
)  _C  M ) )
129 0le1 10551 . . . . 5  |-  0  <_  1
130 0re 10040 . . . . . 6  |-  0  e.  RR
131130, 22, 41letri 10166 . . . . 5  |-  ( ( 0  <_  1  /\  1  <_  M )  -> 
0  <_  M )
132129, 38, 131mp2an 708 . . . 4  |-  0  <_  M
1333nngt0i 11054 . . . . . 6  |-  0  <  N
13442, 133elrpii 11835 . . . . 5  |-  N  e.  RR+
135 ltaddrp 11867 . . . . 5  |-  ( ( M  e.  RR  /\  N  e.  RR+ )  ->  M  <  ( M  +  N ) )
13641, 134, 135mp2an 708 . . . 4  |-  M  < 
( M  +  N
)
137 0z 11388 . . . . 5  |-  0  e.  ZZ
138 elfzm11 12411 . . . . 5  |-  ( ( 0  e.  ZZ  /\  ( M  +  N
)  e.  ZZ )  ->  ( M  e.  ( 0 ... (
( M  +  N
)  -  1 ) )  <->  ( M  e.  ZZ  /\  0  <_  M  /\  M  <  ( M  +  N )
) ) )
139137, 52, 138mp2an 708 . . . 4  |-  ( M  e.  ( 0 ... ( ( M  +  N )  -  1 ) )  <->  ( M  e.  ZZ  /\  0  <_  M  /\  M  <  ( M  +  N )
) )
140100, 132, 136, 139mpbir3an 1244 . . 3  |-  M  e.  ( 0 ... (
( M  +  N
)  -  1 ) )
141 bcm1n 29554 . . 3  |-  ( ( M  e.  ( 0 ... ( ( M  +  N )  - 
1 ) )  /\  ( M  +  N
)  e.  NN )  ->  ( ( ( ( M  +  N
)  -  1 )  _C  M )  / 
( ( M  +  N )  _C  M
) )  =  ( ( ( M  +  N )  -  M
)  /  ( M  +  N ) ) )
142140, 51, 141mp2an 708 . 2  |-  ( ( ( ( M  +  N )  -  1 )  _C  M )  /  ( ( M  +  N )  _C  M ) )  =  ( ( ( M  +  N )  -  M )  /  ( M  +  N )
)
143 pncan2 10288 . . . 4  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  +  N )  -  M
)  =  N )
144108, 109, 143mp2an 708 . . 3  |-  ( ( M  +  N )  -  M )  =  N
145144oveq1i 6660 . 2  |-  ( ( ( M  +  N
)  -  M )  /  ( M  +  N ) )  =  ( N  /  ( M  +  N )
)
146128, 142, 1453eqtri 2648 1  |-  ( P `
 { c  e.  O  |  -.  1  e.  c } )  =  ( N  /  ( M  +  N )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   {crab 2916    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326    _C cbc 13089   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-fac 13061  df-bc 13090  df-hash 13118
This theorem is referenced by:  ballotth  30599
  Copyright terms: Public domain W3C validator