| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ssbeq | Structured version Visualization version Unicode version | ||
| Description: Substitution in an equality, disjoint variables case. Uses only ax-1--6. It might be shorter to prove the result about composition of two substitutions and prove bj-ssbeq 32627 first with a DV on x,t, and then in the general case. (Contributed by BJ, 22-Dec-2020.) |
| Ref | Expression |
|---|---|
| bj-ssbeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ssb 32620 |
. 2
| |
| 2 | 19.23v 1902 |
. . . . . 6
| |
| 3 | ax6ev 1890 |
. . . . . . . 8
| |
| 4 | pm2.27 42 |
. . . . . . . 8
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . 7
|
| 6 | ax-1 6 |
. . . . . . 7
| |
| 7 | 5, 6 | impbii 199 |
. . . . . 6
|
| 8 | 2, 7 | bitri 264 |
. . . . 5
|
| 9 | 8 | imbi2i 326 |
. . . 4
|
| 10 | 9 | albii 1747 |
. . 3
|
| 11 | 19.23v 1902 |
. . . 4
| |
| 12 | ax6ev 1890 |
. . . . . 6
| |
| 13 | pm2.27 42 |
. . . . . 6
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . 5
|
| 15 | ax-1 6 |
. . . . 5
| |
| 16 | 14, 15 | impbii 199 |
. . . 4
|
| 17 | 11, 16 | bitri 264 |
. . 3
|
| 18 | 10, 17 | bitri 264 |
. 2
|
| 19 | 1, 18 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 df-ssb 32620 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |