Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssbeq Structured version   Visualization version   Unicode version

Theorem bj-ssbeq 32627
Description: Substitution in an equality, disjoint variables case. Uses only ax-1--6. It might be shorter to prove the result about composition of two substitutions and prove bj-ssbeq 32627 first with a DV on x,t, and then in the general case. (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
bj-ssbeq  |-  ([ t/ x]b y  =  z  <-> 
y  =  z )
Distinct variable groups:    x, y    x, z

Proof of Theorem bj-ssbeq
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 df-ssb 32620 . 2  |-  ([ t/ x]b y  =  z  <->  A. u ( u  =  t  ->  A. x
( x  =  u  ->  y  =  z ) ) )
2 19.23v 1902 . . . . . 6  |-  ( A. x ( x  =  u  ->  y  =  z )  <->  ( E. x  x  =  u  ->  y  =  z ) )
3 ax6ev 1890 . . . . . . . 8  |-  E. x  x  =  u
4 pm2.27 42 . . . . . . . 8  |-  ( E. x  x  =  u  ->  ( ( E. x  x  =  u  ->  y  =  z )  ->  y  =  z ) )
53, 4ax-mp 5 . . . . . . 7  |-  ( ( E. x  x  =  u  ->  y  =  z )  ->  y  =  z )
6 ax-1 6 . . . . . . 7  |-  ( y  =  z  ->  ( E. x  x  =  u  ->  y  =  z ) )
75, 6impbii 199 . . . . . 6  |-  ( ( E. x  x  =  u  ->  y  =  z )  <->  y  =  z )
82, 7bitri 264 . . . . 5  |-  ( A. x ( x  =  u  ->  y  =  z )  <->  y  =  z )
98imbi2i 326 . . . 4  |-  ( ( u  =  t  ->  A. x ( x  =  u  ->  y  =  z ) )  <->  ( u  =  t  ->  y  =  z ) )
109albii 1747 . . 3  |-  ( A. u ( u  =  t  ->  A. x
( x  =  u  ->  y  =  z ) )  <->  A. u
( u  =  t  ->  y  =  z ) )
11 19.23v 1902 . . . 4  |-  ( A. u ( u  =  t  ->  y  =  z )  <->  ( E. u  u  =  t  ->  y  =  z ) )
12 ax6ev 1890 . . . . . 6  |-  E. u  u  =  t
13 pm2.27 42 . . . . . 6  |-  ( E. u  u  =  t  ->  ( ( E. u  u  =  t  ->  y  =  z )  ->  y  =  z ) )
1412, 13ax-mp 5 . . . . 5  |-  ( ( E. u  u  =  t  ->  y  =  z )  ->  y  =  z )
15 ax-1 6 . . . . 5  |-  ( y  =  z  ->  ( E. u  u  =  t  ->  y  =  z ) )
1614, 15impbii 199 . . . 4  |-  ( ( E. u  u  =  t  ->  y  =  z )  <->  y  =  z )
1711, 16bitri 264 . . 3  |-  ( A. u ( u  =  t  ->  y  =  z )  <->  y  =  z )
1810, 17bitri 264 . 2  |-  ( A. u ( u  =  t  ->  A. x
( x  =  u  ->  y  =  z ) )  <->  y  =  z )
191, 18bitri 264 1  |-  ([ t/ x]b y  =  z  <-> 
y  =  z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481   E.wex 1704  [wssb 32619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888
This theorem depends on definitions:  df-bi 197  df-ex 1705  df-ssb 32620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator