Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1514 Structured version   Visualization version   Unicode version

Theorem bnj1514 31131
Description: Technical lemma for bnj1500 31136. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1514.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1514.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1514.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
Assertion
Ref Expression
bnj1514  |-  ( f  e.  C  ->  A. x  e.  dom  f ( f `
 x )  =  ( G `  Y
) )
Distinct variable groups:    x, A    G, d    Y, d    f, d, x
Allowed substitution hints:    A( f, d)    B( x, f, d)    C( x, f, d)    R( x, f, d)    G( x, f)    Y( x, f)

Proof of Theorem bnj1514
StepHypRef Expression
1 bnj1514.3 . . . . 5  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
21bnj1436 30910 . . . 4  |-  ( f  e.  C  ->  E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) )
3 df-rex 2918 . . . . 5  |-  ( E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  <->  E. d
( d  e.  B  /\  ( f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) ) ) )
4 3anass 1042 . . . . 5  |-  ( ( d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  <->  ( d  e.  B  /\  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) ) )
53, 4bnj133 30793 . . . 4  |-  ( E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  <->  E. d
( d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) ) )
62, 5sylib 208 . . 3  |-  ( f  e.  C  ->  E. d
( d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) ) )
7 simp3 1063 . . . 4  |-  ( ( d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  ->  A. x  e.  d 
( f `  x
)  =  ( G `
 Y ) )
8 fndm 5990 . . . . . 6  |-  ( f  Fn  d  ->  dom  f  =  d )
983ad2ant2 1083 . . . . 5  |-  ( ( d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  ->  dom  f  =  d
)
109raleqdv 3144 . . . 4  |-  ( ( d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  -> 
( A. x  e. 
dom  f ( f `
 x )  =  ( G `  Y
)  <->  A. x  e.  d  ( f `  x
)  =  ( G `
 Y ) ) )
117, 10mpbird 247 . . 3  |-  ( ( d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) )  ->  A. x  e.  dom  f ( f `  x )  =  ( G `  Y ) )
126, 11bnj593 30815 . 2  |-  ( f  e.  C  ->  E. d A. x  e.  dom  f ( f `  x )  =  ( G `  Y ) )
1312bnj937 30842 1  |-  ( f  e.  C  ->  A. x  e.  dom  f ( f `
 x )  =  ( G `  Y
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    C_ wss 3574   <.cop 4183   dom cdm 5114    |` cres 5116    Fn wfn 5883   ` cfv 5888    predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-fn 5891
This theorem is referenced by:  bnj1501  31135
  Copyright terms: Public domain W3C validator