![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1514 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj1500 31136. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1514.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1514.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1514.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
Ref | Expression |
---|---|
bnj1514 | ⊢ (𝑓 ∈ 𝐶 → ∀𝑥 ∈ dom 𝑓(𝑓‘𝑥) = (𝐺‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1514.3 | . . . . 5 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
2 | 1 | bnj1436 30910 | . . . 4 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
3 | df-rex 2918 | . . . . 5 ⊢ (∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ ∃𝑑(𝑑 ∈ 𝐵 ∧ (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)))) | |
4 | 3anass 1042 | . . . . 5 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ (𝑑 ∈ 𝐵 ∧ (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)))) | |
5 | 3, 4 | bnj133 30793 | . . . 4 ⊢ (∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ ∃𝑑(𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
6 | 2, 5 | sylib 208 | . . 3 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑(𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
7 | simp3 1063 | . . . 4 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) → ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) | |
8 | fndm 5990 | . . . . . 6 ⊢ (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑) | |
9 | 8 | 3ad2ant2 1083 | . . . . 5 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) → dom 𝑓 = 𝑑) |
10 | 9 | raleqdv 3144 | . . . 4 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) → (∀𝑥 ∈ dom 𝑓(𝑓‘𝑥) = (𝐺‘𝑌) ↔ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
11 | 7, 10 | mpbird 247 | . . 3 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) → ∀𝑥 ∈ dom 𝑓(𝑓‘𝑥) = (𝐺‘𝑌)) |
12 | 6, 11 | bnj593 30815 | . 2 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑∀𝑥 ∈ dom 𝑓(𝑓‘𝑥) = (𝐺‘𝑌)) |
13 | 12 | bnj937 30842 | 1 ⊢ (𝑓 ∈ 𝐶 → ∀𝑥 ∈ dom 𝑓(𝑓‘𝑥) = (𝐺‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∃wex 1704 ∈ wcel 1990 {cab 2608 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 〈cop 4183 dom cdm 5114 ↾ cres 5116 Fn wfn 5883 ‘cfv 5888 predc-bnj14 30754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-fn 5891 |
This theorem is referenced by: bnj1501 31135 |
Copyright terms: Public domain | W3C validator |