Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1501 Structured version   Visualization version   Unicode version

Theorem bnj1501 31135
Description: Technical lemma for bnj1500 31136. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1501.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1501.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1501.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1501.4  |-  F  = 
U. C
bnj1501.5  |-  ( ph  <->  ( R  FrSe  A  /\  x  e.  A )
)
bnj1501.6  |-  ( ps  <->  (
ph  /\  f  e.  C  /\  x  e.  dom  f ) )
bnj1501.7  |-  ( ch  <->  ( ps  /\  d  e.  B  /\  dom  f  =  d ) )
Assertion
Ref Expression
bnj1501  |-  ( R 
FrSe  A  ->  A. x  e.  A  ( F `  x )  =  ( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R ) ) >.
) )
Distinct variable groups:    A, d,
f, x    B, f    G, d, f, x    R, d, f, x    Y, d    ph, d, f
Allowed substitution hints:    ph( x)    ps( x, f, d)    ch( x, f, d)    B( x, d)    C( x, f, d)    F( x, f, d)    Y( x, f)

Proof of Theorem bnj1501
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 bnj1501.5 . 2  |-  ( ph  <->  ( R  FrSe  A  /\  x  e.  A )
)
21simprbi 480 . . . . . . . 8  |-  ( ph  ->  x  e.  A )
3 bnj1501.1 . . . . . . . . . . 11  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
4 bnj1501.2 . . . . . . . . . . 11  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
5 bnj1501.3 . . . . . . . . . . 11  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
6 bnj1501.4 . . . . . . . . . . 11  |-  F  = 
U. C
73, 4, 5, 6bnj60 31130 . . . . . . . . . 10  |-  ( R 
FrSe  A  ->  F  Fn  A )
8 fndm 5990 . . . . . . . . . 10  |-  ( F  Fn  A  ->  dom  F  =  A )
97, 8syl 17 . . . . . . . . 9  |-  ( R 
FrSe  A  ->  dom  F  =  A )
101, 9bnj832 30828 . . . . . . . 8  |-  ( ph  ->  dom  F  =  A )
112, 10eleqtrrd 2704 . . . . . . 7  |-  ( ph  ->  x  e.  dom  F
)
126dmeqi 5325 . . . . . . . 8  |-  dom  F  =  dom  U. C
135bnj1317 30892 . . . . . . . . 9  |-  ( w  e.  C  ->  A. f  w  e.  C )
1413bnj1400 30906 . . . . . . . 8  |-  dom  U. C  =  U_ f  e.  C  dom  f
1512, 14eqtri 2644 . . . . . . 7  |-  dom  F  =  U_ f  e.  C  dom  f
1611, 15syl6eleq 2711 . . . . . 6  |-  ( ph  ->  x  e.  U_ f  e.  C  dom  f )
1716bnj1405 30907 . . . . 5  |-  ( ph  ->  E. f  e.  C  x  e.  dom  f )
18 bnj1501.6 . . . . 5  |-  ( ps  <->  (
ph  /\  f  e.  C  /\  x  e.  dom  f ) )
1917, 18bnj1209 30867 . . . 4  |-  ( ph  ->  E. f ps )
205bnj1436 30910 . . . . . . . . . 10  |-  ( f  e.  C  ->  E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) )
2120bnj1299 30889 . . . . . . . . 9  |-  ( f  e.  C  ->  E. d  e.  B  f  Fn  d )
22 fndm 5990 . . . . . . . . 9  |-  ( f  Fn  d  ->  dom  f  =  d )
2321, 22bnj31 30785 . . . . . . . 8  |-  ( f  e.  C  ->  E. d  e.  B  dom  f  =  d )
2418, 23bnj836 30830 . . . . . . 7  |-  ( ps 
->  E. d  e.  B  dom  f  =  d
)
25 bnj1501.7 . . . . . . 7  |-  ( ch  <->  ( ps  /\  d  e.  B  /\  dom  f  =  d ) )
263, 4, 5, 6, 1, 18bnj1518 31132 . . . . . . 7  |-  ( ps 
->  A. d ps )
2724, 25, 26bnj1521 30921 . . . . . 6  |-  ( ps 
->  E. d ch )
287bnj930 30840 . . . . . . . . . . . 12  |-  ( R 
FrSe  A  ->  Fun  F
)
291, 28bnj832 30828 . . . . . . . . . . 11  |-  ( ph  ->  Fun  F )
3018, 29bnj835 30829 . . . . . . . . . 10  |-  ( ps 
->  Fun  F )
31 elssuni 4467 . . . . . . . . . . . 12  |-  ( f  e.  C  ->  f  C_ 
U. C )
3231, 6syl6sseqr 3652 . . . . . . . . . . 11  |-  ( f  e.  C  ->  f  C_  F )
3318, 32bnj836 30830 . . . . . . . . . 10  |-  ( ps 
->  f  C_  F )
3418simp3bi 1078 . . . . . . . . . 10  |-  ( ps 
->  x  e.  dom  f )
3530, 33, 34bnj1502 30918 . . . . . . . . 9  |-  ( ps 
->  ( F `  x
)  =  ( f `
 x ) )
363, 4, 5bnj1514 31131 . . . . . . . . . . 11  |-  ( f  e.  C  ->  A. x  e.  dom  f ( f `
 x )  =  ( G `  Y
) )
3718, 36bnj836 30830 . . . . . . . . . 10  |-  ( ps 
->  A. x  e.  dom  f ( f `  x )  =  ( G `  Y ) )
3837, 34bnj1294 30888 . . . . . . . . 9  |-  ( ps 
->  ( f `  x
)  =  ( G `
 Y ) )
3935, 38eqtrd 2656 . . . . . . . 8  |-  ( ps 
->  ( F `  x
)  =  ( G `
 Y ) )
4025, 39bnj835 30829 . . . . . . 7  |-  ( ch 
->  ( F `  x
)  =  ( G `
 Y ) )
4125, 30bnj835 30829 . . . . . . . . . . 11  |-  ( ch 
->  Fun  F )
4225, 33bnj835 30829 . . . . . . . . . . 11  |-  ( ch 
->  f  C_  F )
433bnj1517 30920 . . . . . . . . . . . . . 14  |-  ( d  e.  B  ->  A. x  e.  d  pred ( x ,  A ,  R
)  C_  d )
4425, 43bnj836 30830 . . . . . . . . . . . . 13  |-  ( ch 
->  A. x  e.  d 
pred ( x ,  A ,  R ) 
C_  d )
4525, 34bnj835 30829 . . . . . . . . . . . . . 14  |-  ( ch 
->  x  e.  dom  f )
4625simp3bi 1078 . . . . . . . . . . . . . 14  |-  ( ch 
->  dom  f  =  d )
4745, 46eleqtrd 2703 . . . . . . . . . . . . 13  |-  ( ch 
->  x  e.  d
)
4844, 47bnj1294 30888 . . . . . . . . . . . 12  |-  ( ch 
->  pred ( x ,  A ,  R ) 
C_  d )
4948, 46sseqtr4d 3642 . . . . . . . . . . 11  |-  ( ch 
->  pred ( x ,  A ,  R ) 
C_  dom  f )
5041, 42, 49bnj1503 30919 . . . . . . . . . 10  |-  ( ch 
->  ( F  |`  pred (
x ,  A ,  R ) )  =  ( f  |`  pred (
x ,  A ,  R ) ) )
5150opeq2d 4409 . . . . . . . . 9  |-  ( ch 
->  <. x ,  ( F  |`  pred ( x ,  A ,  R
) ) >.  =  <. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
)
5251, 4syl6eqr 2674 . . . . . . . 8  |-  ( ch 
->  <. x ,  ( F  |`  pred ( x ,  A ,  R
) ) >.  =  Y )
5352fveq2d 6195 . . . . . . 7  |-  ( ch 
->  ( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R ) ) >.
)  =  ( G `
 Y ) )
5440, 53eqtr4d 2659 . . . . . 6  |-  ( ch 
->  ( F `  x
)  =  ( G `
 <. x ,  ( F  |`  pred ( x ,  A ,  R
) ) >. )
)
5527, 54bnj593 30815 . . . . 5  |-  ( ps 
->  E. d ( F `
 x )  =  ( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R ) ) >.
) )
563, 4, 5, 6bnj1519 31133 . . . . 5  |-  ( ( F `  x )  =  ( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R ) ) >. )  ->  A. d
( F `  x
)  =  ( G `
 <. x ,  ( F  |`  pred ( x ,  A ,  R
) ) >. )
)
5755, 56bnj1397 30905 . . . 4  |-  ( ps 
->  ( F `  x
)  =  ( G `
 <. x ,  ( F  |`  pred ( x ,  A ,  R
) ) >. )
)
5819, 57bnj593 30815 . . 3  |-  ( ph  ->  E. f ( F `
 x )  =  ( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R ) ) >.
) )
593, 4, 5, 6bnj1520 31134 . . 3  |-  ( ( F `  x )  =  ( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R ) ) >. )  ->  A. f
( F `  x
)  =  ( G `
 <. x ,  ( F  |`  pred ( x ,  A ,  R
) ) >. )
)
6058, 59bnj1397 30905 . 2  |-  ( ph  ->  ( F `  x
)  =  ( G `
 <. x ,  ( F  |`  pred ( x ,  A ,  R
) ) >. )
)
611, 60bnj1459 30913 1  |-  ( R 
FrSe  A  ->  A. x  e.  A  ( F `  x )  =  ( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R ) ) >.
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    C_ wss 3574   <.cop 4183   U.cuni 4436   U_ciun 4520   dom cdm 5114    |` cres 5116   Fun wfun 5882    Fn wfn 5883   ` cfv 5888    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761  df-bnj19 30763
This theorem is referenced by:  bnj1500  31136
  Copyright terms: Public domain W3C validator