Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj937 Structured version   Visualization version   Unicode version

Theorem bnj937 30842
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj937.1  |-  ( ph  ->  E. x ps )
Assertion
Ref Expression
bnj937  |-  ( ph  ->  ps )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem bnj937
StepHypRef Expression
1 bnj937.1 . 2  |-  ( ph  ->  E. x ps )
2 19.9v 1896 . 2  |-  ( E. x ps  <->  ps )
31, 2sylib 208 1  |-  ( ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by:  bnj1265  30883  bnj1379  30901  bnj852  30991  bnj1148  31064  bnj1154  31067  bnj1189  31077  bnj1245  31082  bnj1286  31087  bnj1311  31092  bnj1371  31097  bnj1374  31099  bnj1498  31129  bnj1514  31131
  Copyright terms: Public domain W3C validator