Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj154 Structured version   Visualization version   Unicode version

Theorem bnj154 30948
Description: Technical lemma for bnj153 30950. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj154.1  |-  ( ph1  <->  [. g  /  f ]. ph' )
bnj154.2  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
Assertion
Ref Expression
bnj154  |-  ( ph1  <->  (
g `  (/) )  = 
pred ( x ,  A ,  R ) )
Distinct variable groups:    A, f    R, f    f, g    x, f
Allowed substitution hints:    A( x, g)    R( x, g)    ph'( x, f, g)    ph1( x, f, g)

Proof of Theorem bnj154
StepHypRef Expression
1 bnj154.1 . 2  |-  ( ph1  <->  [. g  /  f ]. ph' )
2 bnj154.2 . . 3  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
32sbcbii 3491 . 2  |-  ( [. g  /  f ]. ph'  <->  [. g  / 
f ]. ( f `  (/) )  =  pred (
x ,  A ,  R ) )
4 vex 3203 . . 3  |-  g  e. 
_V
5 fveq1 6190 . . . 4  |-  ( f  =  g  ->  (
f `  (/) )  =  ( g `  (/) ) )
65eqeq1d 2624 . . 3  |-  ( f  =  g  ->  (
( f `  (/) )  = 
pred ( x ,  A ,  R )  <-> 
( g `  (/) )  = 
pred ( x ,  A ,  R ) ) )
74, 6sbcie 3470 . 2  |-  ( [. g  /  f ]. (
f `  (/) )  = 
pred ( x ,  A ,  R )  <-> 
( g `  (/) )  = 
pred ( x ,  A ,  R ) )
81, 3, 73bitri 286 1  |-  ( ph1  <->  (
g `  (/) )  = 
pred ( x ,  A ,  R ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483   [.wsbc 3435   (/)c0 3915   ` cfv 5888    predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-sbc 3436  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by:  bnj153  30950  bnj580  30983  bnj607  30986
  Copyright terms: Public domain W3C validator