Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj151 Structured version   Visualization version   Unicode version

Theorem bnj151 30947
Description: Technical lemma for bnj153 30950. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj151.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj151.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj151.3  |-  D  =  ( om  \  { (/)
} )
bnj151.4  |-  ( th  <->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
) )
bnj151.5  |-  ( ta  <->  A. m  e.  D  ( m  _E  n  ->  [. m  /  n ]. th ) )
bnj151.6  |-  ( ze  <->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  ( f  Fn  n  /\  ph  /\  ps ) ) )
bnj151.7  |-  ( ph'  <->  [. 1o  /  n ]. ph )
bnj151.8  |-  ( ps'  <->  [. 1o  /  n ]. ps )
bnj151.9  |-  ( th'  <->  [. 1o  /  n ]. th )
bnj151.10  |-  ( th0  <->  (
( R  FrSe  A  /\  x  e.  A
)  ->  E. f
( f  Fn  1o  /\  ph'  /\  ps' ) ) )
bnj151.11  |-  ( th1  <->  (
( R  FrSe  A  /\  x  e.  A
)  ->  E* f
( f  Fn  1o  /\  ph'  /\  ps' ) ) )
bnj151.12  |-  ( ze'  <->  [. 1o  /  n ]. ze )
bnj151.13  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
bnj151.14  |-  ( ph"  <->  [. F  / 
f ]. ph' )
bnj151.15  |-  ( ps"  <->  [. F  / 
f ]. ps' )
bnj151.16  |-  ( ze"  <->  [. F  / 
f ]. ze' )
bnj151.17  |-  ( ze0  <->  (
f  Fn  1o  /\  ph' 
/\  ps' ) )
bnj151.18  |-  ( ze1  <->  [. g  /  f ]. ze0 )
bnj151.19  |-  ( ph1  <->  [. g  /  f ]. ph' )
bnj151.20  |-  ( ps1  <->  [. g  /  f ]. ps' )
Assertion
Ref Expression
bnj151  |-  ( n  =  1o  ->  (
( n  e.  D  /\  ta )  ->  th )
)
Distinct variable groups:    A, f,
g, x    A, n, f, x    f, F, i, y    R, f, g, x    R, n    f, ze1    f, ze"    g, ze0    i, n, y    m, n
Allowed substitution hints:    ph( x, y, f, g, i, m, n)    ps( x, y, f, g, i, m, n)    th( x, y, f, g, i, m, n)    ta( x, y, f, g, i, m, n)    ze( x, y, f, g, i, m, n)    A( y, i, m)    D( x, y, f, g, i, m, n)    R( y, i, m)    F( x, g, m, n)    ph'( x, y, f, g, i, m, n)    ps'( x, y, f, g, i, m, n)    th'( x, y, f, g, i, m, n)    ze'( x, y, f, g, i, m, n)   
ph"( x, y, f, g, i, m, n)    ps"( x, y, f, g, i, m, n)    ze"( x, y, g, i, m, n)    th0( x, y, f, g, i, m, n)    ze0( x, y, f, i, m, n)    ph1( x, y, f, g, i, m, n)    ps1( x, y, f, g, i, m, n)    th1( x, y, f, g, i, m, n)    ze1( x, y, g, i, m, n)

Proof of Theorem bnj151
StepHypRef Expression
1 bnj151.1 . . . . . . 7  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
2 bnj151.2 . . . . . . 7  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
3 bnj151.6 . . . . . . 7  |-  ( ze  <->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  ( f  Fn  n  /\  ph  /\  ps ) ) )
4 bnj151.7 . . . . . . 7  |-  ( ph'  <->  [. 1o  /  n ]. ph )
5 bnj151.8 . . . . . . 7  |-  ( ps'  <->  [. 1o  /  n ]. ps )
6 bnj151.10 . . . . . . 7  |-  ( th0  <->  (
( R  FrSe  A  /\  x  e.  A
)  ->  E. f
( f  Fn  1o  /\  ph'  /\  ps' ) ) )
7 bnj151.12 . . . . . . 7  |-  ( ze'  <->  [. 1o  /  n ]. ze )
8 bnj151.13 . . . . . . 7  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
9 bnj151.14 . . . . . . 7  |-  ( ph"  <->  [. F  / 
f ]. ph' )
10 bnj151.15 . . . . . . 7  |-  ( ps"  <->  [. F  / 
f ]. ps' )
11 bnj151.16 . . . . . . 7  |-  ( ze"  <->  [. F  / 
f ]. ze' )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11bnj150 30946 . . . . . 6  |-  th0
1312, 6mpbi 220 . . . . 5  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  E. f ( f  Fn  1o  /\  ph'  /\  ps' ) )
14 bnj151.11 . . . . . . 7  |-  ( th1  <->  (
( R  FrSe  A  /\  x  e.  A
)  ->  E* f
( f  Fn  1o  /\  ph'  /\  ps' ) ) )
15 bnj151.17 . . . . . . 7  |-  ( ze0  <->  (
f  Fn  1o  /\  ph' 
/\  ps' ) )
16 bnj151.18 . . . . . . 7  |-  ( ze1  <->  [. g  /  f ]. ze0 )
17 bnj151.19 . . . . . . 7  |-  ( ph1  <->  [. g  /  f ]. ph' )
18 bnj151.20 . . . . . . 7  |-  ( ps1  <->  [. g  /  f ]. ps' )
191, 4bnj118 30939 . . . . . . 7  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
2014, 15, 16, 17, 18, 19bnj149 30945 . . . . . 6  |-  th1
2120, 14mpbi 220 . . . . 5  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  E* f ( f  Fn  1o  /\  ph'  /\  ps' ) )
22 eu5 2496 . . . . 5  |-  ( E! f ( f  Fn  1o  /\  ph'  /\  ps' )  <->  ( E. f ( f  Fn  1o  /\  ph'  /\  ps' )  /\  E* f ( f  Fn  1o  /\  ph'  /\  ps' ) ) )
2313, 21, 22sylanbrc 698 . . . 4  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  E! f ( f  Fn  1o  /\  ph'  /\  ps' ) )
24 bnj151.4 . . . . 5  |-  ( th  <->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
) )
25 bnj151.9 . . . . 5  |-  ( th'  <->  [. 1o  /  n ]. th )
2624, 4, 5, 25bnj130 30944 . . . 4  |-  ( th'  <->  ( ( R  FrSe  A  /\  x  e.  A )  ->  E! f ( f  Fn  1o  /\  ph'  /\  ps' ) ) )
2723, 26mpbir 221 . . 3  |-  th'
28 sbceq1a 3446 . . . 4  |-  ( n  =  1o  ->  ( th 
<-> 
[. 1o  /  n ]. th ) )
2928, 25syl6bbr 278 . . 3  |-  ( n  =  1o  ->  ( th 
<->  th' ) )
3027, 29mpbiri 248 . 2  |-  ( n  =  1o  ->  th )
3130a1d 25 1  |-  ( n  =  1o  ->  (
( n  e.  D  /\  ta )  ->  th )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   E*wmo 2471   A.wral 2912   [.wsbc 3435    \ cdif 3571   (/)c0 3915   {csn 4177   <.cop 4183   U_ciun 4520   class class class wbr 4653    _E cep 5028   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065   1oc1o 7553    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj153  30950
  Copyright terms: Public domain W3C validator