| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj151 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj153 30950. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj151.1 |
|
| bnj151.2 |
|
| bnj151.3 |
|
| bnj151.4 |
|
| bnj151.5 |
|
| bnj151.6 |
|
| bnj151.7 |
|
| bnj151.8 |
|
| bnj151.9 |
|
| bnj151.10 |
|
| bnj151.11 |
|
| bnj151.12 |
|
| bnj151.13 |
|
| bnj151.14 |
|
| bnj151.15 |
|
| bnj151.16 |
|
| bnj151.17 |
|
| bnj151.18 |
|
| bnj151.19 |
|
| bnj151.20 |
|
| Ref | Expression |
|---|---|
| bnj151 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj151.1 |
. . . . . . 7
| |
| 2 | bnj151.2 |
. . . . . . 7
| |
| 3 | bnj151.6 |
. . . . . . 7
| |
| 4 | bnj151.7 |
. . . . . . 7
| |
| 5 | bnj151.8 |
. . . . . . 7
| |
| 6 | bnj151.10 |
. . . . . . 7
| |
| 7 | bnj151.12 |
. . . . . . 7
| |
| 8 | bnj151.13 |
. . . . . . 7
| |
| 9 | bnj151.14 |
. . . . . . 7
| |
| 10 | bnj151.15 |
. . . . . . 7
| |
| 11 | bnj151.16 |
. . . . . . 7
| |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | bnj150 30946 |
. . . . . 6
|
| 13 | 12, 6 | mpbi 220 |
. . . . 5
|
| 14 | bnj151.11 |
. . . . . . 7
| |
| 15 | bnj151.17 |
. . . . . . 7
| |
| 16 | bnj151.18 |
. . . . . . 7
| |
| 17 | bnj151.19 |
. . . . . . 7
| |
| 18 | bnj151.20 |
. . . . . . 7
| |
| 19 | 1, 4 | bnj118 30939 |
. . . . . . 7
|
| 20 | 14, 15, 16, 17, 18, 19 | bnj149 30945 |
. . . . . 6
|
| 21 | 20, 14 | mpbi 220 |
. . . . 5
|
| 22 | eu5 2496 |
. . . . 5
| |
| 23 | 13, 21, 22 | sylanbrc 698 |
. . . 4
|
| 24 | bnj151.4 |
. . . . 5
| |
| 25 | bnj151.9 |
. . . . 5
| |
| 26 | 24, 4, 5, 25 | bnj130 30944 |
. . . 4
|
| 27 | 23, 26 | mpbir 221 |
. . 3
|
| 28 | sbceq1a 3446 |
. . . 4
| |
| 29 | 28, 25 | syl6bbr 278 |
. . 3
|
| 30 | 27, 29 | mpbiri 248 |
. 2
|
| 31 | 30 | a1d 25 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-1o 7560 df-bnj13 30757 df-bnj15 30759 |
| This theorem is referenced by: bnj153 30950 |
| Copyright terms: Public domain | W3C validator |