| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj153 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj153.1 |
|
| bnj153.2 |
|
| bnj153.3 |
|
| bnj153.4 |
|
| bnj153.5 |
|
| Ref | Expression |
|---|---|
| bnj153 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj153.1 |
. 2
| |
| 2 | bnj153.2 |
. 2
| |
| 3 | bnj153.3 |
. 2
| |
| 4 | bnj153.4 |
. 2
| |
| 5 | bnj153.5 |
. 2
| |
| 6 | biid 251 |
. 2
| |
| 7 | biid 251 |
. . . 4
| |
| 8 | 1, 7 | bnj118 30939 |
. . 3
|
| 9 | 8 | bicomi 214 |
. 2
|
| 10 | bnj105 30790 |
. . . 4
| |
| 11 | 2, 10 | bnj92 30932 |
. . 3
|
| 12 | 11 | bicomi 214 |
. 2
|
| 13 | biid 251 |
. 2
| |
| 14 | biid 251 |
. 2
| |
| 15 | biid 251 |
. 2
| |
| 16 | biid 251 |
. . . . 5
| |
| 17 | biid 251 |
. . . . 5
| |
| 18 | 6, 16, 7, 17 | bnj121 30940 |
. . . 4
|
| 19 | 8 | anbi2i 730 |
. . . . . . 7
|
| 20 | 19, 11 | anbi12i 733 |
. . . . . 6
|
| 21 | df-3an 1039 |
. . . . . 6
| |
| 22 | df-3an 1039 |
. . . . . 6
| |
| 23 | 20, 21, 22 | 3bitr4i 292 |
. . . . 5
|
| 24 | 23 | imbi2i 326 |
. . . 4
|
| 25 | 18, 24 | bitri 264 |
. . 3
|
| 26 | 25 | bicomi 214 |
. 2
|
| 27 | eqid 2622 |
. 2
| |
| 28 | biid 251 |
. 2
| |
| 29 | biid 251 |
. 2
| |
| 30 | 26 | sbcbii 3491 |
. . 3
|
| 31 | biid 251 |
. . . . 5
| |
| 32 | biid 251 |
. . . . 5
| |
| 33 | biid 251 |
. . . . 5
| |
| 34 | 27, 31, 32, 33, 18 | bnj124 30941 |
. . . 4
|
| 35 | 1, 7, 31, 27 | bnj125 30942 |
. . . . . . . 8
|
| 36 | 35 | anbi2i 730 |
. . . . . . 7
|
| 37 | 2, 17, 32, 27 | bnj126 30943 |
. . . . . . 7
|
| 38 | 36, 37 | anbi12i 733 |
. . . . . 6
|
| 39 | df-3an 1039 |
. . . . . 6
| |
| 40 | df-3an 1039 |
. . . . . 6
| |
| 41 | 38, 39, 40 | 3bitr4i 292 |
. . . . 5
|
| 42 | 41 | imbi2i 326 |
. . . 4
|
| 43 | 34, 42 | bitri 264 |
. . 3
|
| 44 | 30, 43 | bitr2i 265 |
. 2
|
| 45 | biid 251 |
. 2
| |
| 46 | biid 251 |
. . . . 5
| |
| 47 | biid 251 |
. . . . 5
| |
| 48 | biid 251 |
. . . . 5
| |
| 49 | biid 251 |
. . . . 5
| |
| 50 | 46, 47, 48, 49 | bnj156 30796 |
. . . 4
|
| 51 | 48, 8 | bnj154 30948 |
. . . . . . 7
|
| 52 | 51 | anbi2i 730 |
. . . . . 6
|
| 53 | 17, 11 | bitri 264 |
. . . . . . 7
|
| 54 | 49, 53 | bnj155 30949 |
. . . . . 6
|
| 55 | 52, 54 | anbi12i 733 |
. . . . 5
|
| 56 | df-3an 1039 |
. . . . 5
| |
| 57 | df-3an 1039 |
. . . . 5
| |
| 58 | 55, 56, 57 | 3bitr4i 292 |
. . . 4
|
| 59 | 50, 58 | bitri 264 |
. . 3
|
| 60 | 23 | sbcbii 3491 |
. . 3
|
| 61 | 59, 60 | bitr3i 266 |
. 2
|
| 62 | biid 251 |
. 2
| |
| 63 | biid 251 |
. 2
| |
| 64 | 1, 2, 3, 4, 5, 6, 9, 12, 13, 14, 15, 26, 27, 28, 29, 44, 45, 61, 62, 63 | bnj151 30947 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-1o 7560 df-bnj13 30757 df-bnj15 30759 |
| This theorem is referenced by: bnj852 30991 |
| Copyright terms: Public domain | W3C validator |