| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj873 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj873.4 |
|
| bnj873.7 |
|
| bnj873.8 |
|
| Ref | Expression |
|---|---|
| bnj873 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj873.4 |
. 2
| |
| 2 | nfv 1843 |
. . 3
| |
| 3 | nfcv 2764 |
. . . 4
| |
| 4 | nfv 1843 |
. . . . 5
| |
| 5 | bnj873.7 |
. . . . . 6
| |
| 6 | nfsbc1v 3455 |
. . . . . 6
| |
| 7 | 5, 6 | nfxfr 1779 |
. . . . 5
|
| 8 | bnj873.8 |
. . . . . 6
| |
| 9 | nfsbc1v 3455 |
. . . . . 6
| |
| 10 | 8, 9 | nfxfr 1779 |
. . . . 5
|
| 11 | 4, 7, 10 | nf3an 1831 |
. . . 4
|
| 12 | 3, 11 | nfrex 3007 |
. . 3
|
| 13 | fneq1 5979 |
. . . . 5
| |
| 14 | sbceq1a 3446 |
. . . . . 6
| |
| 15 | 14, 5 | syl6bbr 278 |
. . . . 5
|
| 16 | sbceq1a 3446 |
. . . . . 6
| |
| 17 | 16, 8 | syl6bbr 278 |
. . . . 5
|
| 18 | 13, 15, 17 | 3anbi123d 1399 |
. . . 4
|
| 19 | 18 | rexbidv 3052 |
. . 3
|
| 20 | 2, 12, 19 | cbvab 2746 |
. 2
|
| 21 | 1, 20 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-fun 5890 df-fn 5891 |
| This theorem is referenced by: bnj849 30995 bnj893 30998 |
| Copyright terms: Public domain | W3C validator |