| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj893 | Structured version Visualization version Unicode version | ||
| Description: Property of |
| Ref | Expression |
|---|---|
| bnj893 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 251 |
. . 3
| |
| 2 | biid 251 |
. . 3
| |
| 3 | eqid 2622 |
. . 3
| |
| 4 | eqid 2622 |
. . 3
| |
| 5 | 1, 2, 3, 4 | bnj882 30996 |
. 2
|
| 6 | vex 3203 |
. . . . . . . . . . 11
| |
| 7 | fveq1 6190 |
. . . . . . . . . . . 12
| |
| 8 | 7 | eqeq1d 2624 |
. . . . . . . . . . 11
|
| 9 | 6, 8 | sbcie 3470 |
. . . . . . . . . 10
|
| 10 | 9 | bicomi 214 |
. . . . . . . . 9
|
| 11 | fveq1 6190 |
. . . . . . . . . . . . . 14
| |
| 12 | fveq1 6190 |
. . . . . . . . . . . . . . 15
| |
| 13 | 12 | iuneq1d 4545 |
. . . . . . . . . . . . . 14
|
| 14 | 11, 13 | eqeq12d 2637 |
. . . . . . . . . . . . 13
|
| 15 | 14 | imbi2d 330 |
. . . . . . . . . . . 12
|
| 16 | 15 | ralbidv 2986 |
. . . . . . . . . . 11
|
| 17 | 6, 16 | sbcie 3470 |
. . . . . . . . . 10
|
| 18 | 17 | bicomi 214 |
. . . . . . . . 9
|
| 19 | 4, 10, 18 | bnj873 30994 |
. . . . . . . 8
|
| 20 | 19 | eleq2i 2693 |
. . . . . . 7
|
| 21 | 20 | anbi1i 731 |
. . . . . 6
|
| 22 | 21 | rexbii2 3039 |
. . . . 5
|
| 23 | 22 | abbii 2739 |
. . . 4
|
| 24 | df-iun 4522 |
. . . 4
| |
| 25 | df-iun 4522 |
. . . 4
| |
| 26 | 23, 24, 25 | 3eqtr4i 2654 |
. . 3
|
| 27 | biid 251 |
. . . . 5
| |
| 28 | biid 251 |
. . . . 5
| |
| 29 | eqid 2622 |
. . . . 5
| |
| 30 | biid 251 |
. . . . 5
| |
| 31 | biid 251 |
. . . . 5
| |
| 32 | biid 251 |
. . . . 5
| |
| 33 | biid 251 |
. . . . 5
| |
| 34 | biid 251 |
. . . . 5
| |
| 35 | biid 251 |
. . . . 5
| |
| 36 | 27, 28, 3, 29, 30, 31, 32, 33, 34, 35 | bnj849 30995 |
. . . 4
|
| 37 | vex 3203 |
. . . . . . 7
| |
| 38 | 37 | dmex 7099 |
. . . . . 6
|
| 39 | fvex 6201 |
. . . . . 6
| |
| 40 | 38, 39 | iunex 7147 |
. . . . 5
|
| 41 | 40 | rgenw 2924 |
. . . 4
|
| 42 | iunexg 7143 |
. . . 4
| |
| 43 | 36, 41, 42 | sylancl 694 |
. . 3
|
| 44 | 26, 43 | syl5eqel 2705 |
. 2
|
| 45 | 5, 44 | syl5eqel 2705 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-1o 7560 df-bnj17 30753 df-bnj14 30755 df-bnj13 30757 df-bnj15 30759 df-bnj18 30761 |
| This theorem is referenced by: bnj1125 31060 bnj1136 31065 bnj1177 31074 bnj1413 31103 bnj1452 31120 |
| Copyright terms: Public domain | W3C validator |