| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvab | Structured version Visualization version Unicode version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
| Ref | Expression |
|---|---|
| cbvab.1 |
|
| cbvab.2 |
|
| cbvab.3 |
|
| Ref | Expression |
|---|---|
| cbvab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvab.1 |
. . . . 5
| |
| 2 | 1 | sbco2 2415 |
. . . 4
|
| 3 | cbvab.2 |
. . . . . 6
| |
| 4 | cbvab.3 |
. . . . . 6
| |
| 5 | 3, 4 | sbie 2408 |
. . . . 5
|
| 6 | 5 | sbbii 1887 |
. . . 4
|
| 7 | 2, 6 | bitr3i 266 |
. . 3
|
| 8 | df-clab 2609 |
. . 3
| |
| 9 | df-clab 2609 |
. . 3
| |
| 10 | 7, 8, 9 | 3bitr4i 292 |
. 2
|
| 11 | 10 | eqriv 2619 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 |
| This theorem is referenced by: cbvabv 2747 cbvrab 3198 cbvsbc 3464 cbvrabcsf 3568 rabsnifsb 4257 dfdmf 5317 dfrnf 5364 funfv2f 6267 abrexex2g 7144 abrexex2OLD 7150 bnj873 30994 ptrest 33408 poimirlem26 33435 poimirlem27 33436 |
| Copyright terms: Public domain | W3C validator |