| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj967 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj967.2 |
|
| bnj967.3 |
|
| bnj967.10 |
|
| bnj967.12 |
|
| bnj967.13 |
|
| bnj967.44 |
|
| Ref | Expression |
|---|---|
| bnj967 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj967.44 |
. . . . . . 7
| |
| 2 | 1 | 3adant3 1081 |
. . . . . 6
|
| 3 | bnj967.3 |
. . . . . . . . 9
| |
| 4 | 3 | bnj1235 30875 |
. . . . . . . 8
|
| 5 | 4 | 3ad2ant1 1082 |
. . . . . . 7
|
| 6 | 5 | 3ad2ant2 1083 |
. . . . . 6
|
| 7 | simp23 1096 |
. . . . . 6
| |
| 8 | simp3 1063 |
. . . . . . 7
| |
| 9 | 8 | 3ad2ant3 1084 |
. . . . . 6
|
| 10 | 2, 6, 7, 9 | bnj951 30846 |
. . . . 5
|
| 11 | bnj967.10 |
. . . . . . . . . 10
| |
| 12 | 11 | bnj923 30838 |
. . . . . . . . 9
|
| 13 | 3, 12 | bnj769 30832 |
. . . . . . . 8
|
| 14 | 13 | 3ad2ant1 1082 |
. . . . . . 7
|
| 15 | 14, 8 | bnj240 30765 |
. . . . . 6
|
| 16 | nnord 7073 |
. . . . . . . 8
| |
| 17 | ordtr 5737 |
. . . . . . . 8
| |
| 18 | 16, 17 | syl 17 |
. . . . . . 7
|
| 19 | trsuc 5810 |
. . . . . . 7
| |
| 20 | 18, 19 | sylan 488 |
. . . . . 6
|
| 21 | 15, 20 | syl 17 |
. . . . 5
|
| 22 | bnj658 30821 |
. . . . . . 7
| |
| 23 | 22 | anim1i 592 |
. . . . . 6
|
| 24 | df-bnj17 30753 |
. . . . . 6
| |
| 25 | 23, 24 | sylibr 224 |
. . . . 5
|
| 26 | 10, 21, 25 | syl2anc 693 |
. . . 4
|
| 27 | bnj967.13 |
. . . . 5
| |
| 28 | 27 | bnj945 30844 |
. . . 4
|
| 29 | 26, 28 | syl 17 |
. . 3
|
| 30 | 27 | bnj945 30844 |
. . . 4
|
| 31 | 10, 30 | syl 17 |
. . 3
|
| 32 | 3simpb 1059 |
. . . 4
| |
| 33 | 32 | 3ad2ant3 1084 |
. . 3
|
| 34 | 3 | bnj1254 30880 |
. . . . 5
|
| 35 | 34 | 3ad2ant1 1082 |
. . . 4
|
| 36 | 35 | 3ad2ant2 1083 |
. . 3
|
| 37 | 29, 31, 33, 36 | bnj951 30846 |
. 2
|
| 38 | bnj967.2 |
. . 3
| |
| 39 | bnj967.12 |
. . . 4
| |
| 40 | 39, 27 | bnj958 31010 |
. . 3
|
| 41 | 38, 40 | bnj953 31009 |
. 2
|
| 42 | 37, 41 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-om 7066 df-bnj17 30753 |
| This theorem is referenced by: bnj910 31018 |
| Copyright terms: Public domain | W3C validator |