| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj944 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj944.1 |
|
| bnj944.2 |
|
| bnj944.3 |
|
| bnj944.4 |
|
| bnj944.7 |
|
| bnj944.10 |
|
| bnj944.12 |
|
| bnj944.13 |
|
| bnj944.14 |
|
| bnj944.15 |
|
| Ref | Expression |
|---|---|
| bnj944 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . 4
| |
| 2 | bnj944.3 |
. . . . . . . 8
| |
| 3 | bnj667 30822 |
. . . . . . . 8
| |
| 4 | 2, 3 | sylbi 207 |
. . . . . . 7
|
| 5 | bnj944.14 |
. . . . . . 7
| |
| 6 | 4, 5 | sylibr 224 |
. . . . . 6
|
| 7 | 6 | 3ad2ant1 1082 |
. . . . 5
|
| 8 | 7 | adantl 482 |
. . . 4
|
| 9 | 2 | bnj1232 30874 |
. . . . . . 7
|
| 10 | vex 3203 |
. . . . . . . 8
| |
| 11 | 10 | bnj216 30800 |
. . . . . . 7
|
| 12 | id 22 |
. . . . . . 7
| |
| 13 | 9, 11, 12 | 3anim123i 1247 |
. . . . . 6
|
| 14 | bnj944.15 |
. . . . . . 7
| |
| 15 | 3ancomb 1047 |
. . . . . . 7
| |
| 16 | 14, 15 | bitri 264 |
. . . . . 6
|
| 17 | 13, 16 | sylibr 224 |
. . . . 5
|
| 18 | 17 | adantl 482 |
. . . 4
|
| 19 | bnj253 30770 |
. . . 4
| |
| 20 | 1, 8, 18, 19 | syl3anbrc 1246 |
. . 3
|
| 21 | bnj944.12 |
. . . 4
| |
| 22 | bnj944.10 |
. . . . 5
| |
| 23 | bnj944.1 |
. . . . 5
| |
| 24 | bnj944.2 |
. . . . 5
| |
| 25 | 22, 5, 14, 23, 24 | bnj938 31007 |
. . . 4
|
| 26 | 21, 25 | syl5eqel 2705 |
. . 3
|
| 27 | 20, 26 | syl 17 |
. 2
|
| 28 | bnj658 30821 |
. . . . . 6
| |
| 29 | 2, 28 | sylbi 207 |
. . . . 5
|
| 30 | 29 | 3ad2ant1 1082 |
. . . 4
|
| 31 | simp3 1063 |
. . . 4
| |
| 32 | bnj291 30777 |
. . . 4
| |
| 33 | 30, 31, 32 | sylanbrc 698 |
. . 3
|
| 34 | 33 | adantl 482 |
. 2
|
| 35 | bnj944.7 |
. . . . 5
| |
| 36 | bnj944.13 |
. . . . . . 7
| |
| 37 | opeq2 4403 |
. . . . . . . . 9
| |
| 38 | 37 | sneqd 4189 |
. . . . . . . 8
|
| 39 | 38 | uneq2d 3767 |
. . . . . . 7
|
| 40 | 36, 39 | syl5eq 2668 |
. . . . . 6
|
| 41 | 40 | sbceq1d 3440 |
. . . . 5
|
| 42 | 35, 41 | syl5bb 272 |
. . . 4
|
| 43 | 42 | imbi2d 330 |
. . 3
|
| 44 | bnj944.4 |
. . . 4
| |
| 45 | biid 251 |
. . . 4
| |
| 46 | eqid 2622 |
. . . 4
| |
| 47 | 0ex 4790 |
. . . . 5
| |
| 48 | 47 | elimel 4150 |
. . . 4
|
| 49 | 23, 44, 45, 22, 46, 48 | bnj929 31006 |
. . 3
|
| 50 | 43, 49 | dedth 4139 |
. 2
|
| 51 | 27, 34, 50 | sylc 65 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-bnj17 30753 df-bnj14 30755 df-bnj13 30757 df-bnj15 30759 |
| This theorem is referenced by: bnj910 31018 |
| Copyright terms: Public domain | W3C validator |