Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj944 Structured version   Visualization version   Unicode version

Theorem bnj944 31008
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj944.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj944.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj944.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj944.4  |-  ( ph'  <->  [. p  /  n ]. ph )
bnj944.7  |-  ( ph"  <->  [. G  / 
f ]. ph' )
bnj944.10  |-  D  =  ( om  \  { (/)
} )
bnj944.12  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
bnj944.13  |-  G  =  ( f  u.  { <. n ,  C >. } )
bnj944.14  |-  ( ta  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
bnj944.15  |-  ( si  <->  ( n  e.  D  /\  p  =  suc  n  /\  m  e.  n )
)
Assertion
Ref Expression
bnj944  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ph" )
Distinct variable groups:    A, f,
i, m, n    y, A, f, i, m    R, f, i, m, n    y, R    f, X, n
Allowed substitution hints:    ph( y, f, i, m, n, p)    ps( y, f, i, m, n, p)    ch( y,
f, i, m, n, p)    ta( y, f, i, m, n, p)    si( y,
f, i, m, n, p)    A( p)    C( y,
f, i, m, n, p)    D( y, f, i, m, n, p)    R( p)    G( y, f, i, m, n, p)    X( y, i, m, p)    ph'( y, f, i, m, n, p)    ph"( y, f, i, m, n, p)

Proof of Theorem bnj944
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  -> 
( R  FrSe  A  /\  X  e.  A
) )
2 bnj944.3 . . . . . . . 8  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
3 bnj667 30822 . . . . . . . 8  |-  ( ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps )  ->  (
f  Fn  n  /\  ph 
/\  ps ) )
42, 3sylbi 207 . . . . . . 7  |-  ( ch 
->  ( f  Fn  n  /\  ph  /\  ps )
)
5 bnj944.14 . . . . . . 7  |-  ( ta  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
64, 5sylibr 224 . . . . . 6  |-  ( ch 
->  ta )
763ad2ant1 1082 . . . . 5  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  ->  ta )
87adantl 482 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ta )
92bnj1232 30874 . . . . . . 7  |-  ( ch 
->  n  e.  D
)
10 vex 3203 . . . . . . . 8  |-  m  e. 
_V
1110bnj216 30800 . . . . . . 7  |-  ( n  =  suc  m  ->  m  e.  n )
12 id 22 . . . . . . 7  |-  ( p  =  suc  n  ->  p  =  suc  n )
139, 11, 123anim123i 1247 . . . . . 6  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  -> 
( n  e.  D  /\  m  e.  n  /\  p  =  suc  n ) )
14 bnj944.15 . . . . . . 7  |-  ( si  <->  ( n  e.  D  /\  p  =  suc  n  /\  m  e.  n )
)
15 3ancomb 1047 . . . . . . 7  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  m  e.  n )  <->  ( n  e.  D  /\  m  e.  n  /\  p  =  suc  n ) )
1614, 15bitri 264 . . . . . 6  |-  ( si  <->  ( n  e.  D  /\  m  e.  n  /\  p  =  suc  n ) )
1713, 16sylibr 224 . . . . 5  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  ->  si )
1817adantl 482 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  si )
19 bnj253 30770 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ta  /\ 
si ) )
201, 8, 18, 19syl3anbrc 1246 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  -> 
( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )
)
21 bnj944.12 . . . 4  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
22 bnj944.10 . . . . 5  |-  D  =  ( om  \  { (/)
} )
23 bnj944.1 . . . . 5  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
24 bnj944.2 . . . . 5  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
2522, 5, 14, 23, 24bnj938 31007 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )  ->  U_ y  e.  (
f `  m )  pred ( y ,  A ,  R )  e.  _V )
2621, 25syl5eqel 2705 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )  ->  C  e.  _V )
2720, 26syl 17 . 2  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  C  e.  _V )
28 bnj658 30821 . . . . . 6  |-  ( ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps )  ->  (
n  e.  D  /\  f  Fn  n  /\  ph ) )
292, 28sylbi 207 . . . . 5  |-  ( ch 
->  ( n  e.  D  /\  f  Fn  n  /\  ph ) )
30293ad2ant1 1082 . . . 4  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  -> 
( n  e.  D  /\  f  Fn  n  /\  ph ) )
31 simp3 1063 . . . 4  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  ->  p  =  suc  n )
32 bnj291 30777 . . . 4  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  <->  ( ( n  e.  D  /\  f  Fn  n  /\  ph )  /\  p  =  suc  n ) )
3330, 31, 32sylanbrc 698 . . 3  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  -> 
( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph ) )
3433adantl 482 . 2  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  -> 
( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph ) )
35 bnj944.7 . . . . 5  |-  ( ph"  <->  [. G  / 
f ]. ph' )
36 bnj944.13 . . . . . . 7  |-  G  =  ( f  u.  { <. n ,  C >. } )
37 opeq2 4403 . . . . . . . . 9  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  <. n ,  C >.  =  <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. )
3837sneqd 4189 . . . . . . . 8  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  { <. n ,  C >. }  =  { <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )
3938uneq2d 3767 . . . . . . 7  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  (
f  u.  { <. n ,  C >. } )  =  ( f  u. 
{ <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } ) )
4036, 39syl5eq 2668 . . . . . 6  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  G  =  ( f  u. 
{ <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } ) )
4140sbceq1d 3440 . . . . 5  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  ( [. G  /  f ]. ph'  <->  [. ( f  u. 
{ <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  /  f ]. ph' ) )
4235, 41syl5bb 272 . . . 4  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  ( ph"  <->  [. ( f  u.  { <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  /  f ]. ph' ) )
4342imbi2d 330 . . 3  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  (
( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ph" )  <->  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  [. ( f  u. 
{ <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  /  f ]. ph' ) ) )
44 bnj944.4 . . . 4  |-  ( ph'  <->  [. p  /  n ]. ph )
45 biid 251 . . . 4  |-  ( [. ( f  u.  { <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  /  f ]. ph'  <->  [. ( f  u. 
{ <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  /  f ]. ph' )
46 eqid 2622 . . . 4  |-  ( f  u.  { <. n ,  if ( C  e. 
_V ,  C ,  (/) ) >. } )  =  ( f  u.  { <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )
47 0ex 4790 . . . . 5  |-  (/)  e.  _V
4847elimel 4150 . . . 4  |-  if ( C  e.  _V ,  C ,  (/) )  e. 
_V
4923, 44, 45, 22, 46, 48bnj929 31006 . . 3  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  [. ( f  u.  { <. n ,  if ( C  e. 
_V ,  C ,  (/) ) >. } )  / 
f ]. ph' )
5043, 49dedth 4139 . 2  |-  ( C  e.  _V  ->  (
( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ph" ) )
5127, 34, 50sylc 65 1  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ph" )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   [.wsbc 3435    \ cdif 3571    u. cun 3572   (/)c0 3915   ifcif 4086   {csn 4177   <.cop 4183   U_ciun 4520   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065    /\ w-bnj17 30752    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj910  31018
  Copyright terms: Public domain W3C validator