Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1033 Structured version   Visualization version   Unicode version

Theorem bnj1033 31037
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1033.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj1033.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj1033.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj1033.4  |-  ( th  <->  ( R  FrSe  A  /\  X  e.  A )
)
bnj1033.5  |-  ( ta  <->  ( B  e.  _V  /\  TrFo ( B ,  A ,  R )  /\  pred ( X ,  A ,  R )  C_  B
) )
bnj1033.6  |-  ( et  <->  z  e.  trCl ( X ,  A ,  R )
)
bnj1033.7  |-  ( ze  <->  ( i  e.  n  /\  z  e.  ( f `  i ) ) )
bnj1033.8  |-  D  =  ( om  \  { (/)
} )
bnj1033.9  |-  K  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
bnj1033.10  |-  ( E. f E. n E. i ( th  /\  ta  /\  ch  /\  ze )  ->  z  e.  B
)
Assertion
Ref Expression
bnj1033  |-  ( ( th  /\  ta )  ->  trCl ( X ,  A ,  R )  C_  B )
Distinct variable groups:    A, f,
i, n, y    z, A, f, i, n    z, B    D, i    R, f, i, n, y    z, R    f, X, i, n, y    z, X    ta, f, i, n, z    th, f, i, n, z    ph, i
Allowed substitution hints:    ph( y, z, f, n)    ps( y,
z, f, i, n)    ch( y, z, f, i, n)    th( y)    ta( y)    et( y, z, f, i, n)    ze( y, z, f, i, n)    B( y,
f, i, n)    D( y, z, f, n)    K( y, z, f, i, n)

Proof of Theorem bnj1033
StepHypRef Expression
1 bnj1033.1 . . . . 5  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2 bnj1033.2 . . . . 5  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
3 bnj1033.8 . . . . 5  |-  D  =  ( om  \  { (/)
} )
4 bnj1033.9 . . . . 5  |-  K  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
5 bnj1033.3 . . . . 5  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
61, 2, 3, 4, 5bnj983 31021 . . . 4  |-  ( z  e.  trCl ( X ,  A ,  R )  <->  E. f E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) )
7 19.42v 1918 . . . . . . . . . 10  |-  ( E. i ( ( th 
/\  ta )  /\  ( ch  /\  i  e.  n  /\  z  e.  (
f `  i )
) )  <->  ( ( th  /\  ta )  /\  E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) ) )
8 df-3an 1039 . . . . . . . . . . 11  |-  ( ( th  /\  ta  /\  ( ch  /\  i  e.  n  /\  z  e.  ( f `  i
) ) )  <->  ( ( th  /\  ta )  /\  ( ch  /\  i  e.  n  /\  z  e.  ( f `  i
) ) ) )
98exbii 1774 . . . . . . . . . 10  |-  ( E. i ( th  /\  ta  /\  ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) )  <->  E. i ( ( th 
/\  ta )  /\  ( ch  /\  i  e.  n  /\  z  e.  (
f `  i )
) ) )
10 df-3an 1039 . . . . . . . . . 10  |-  ( ( th  /\  ta  /\  E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) )  <-> 
( ( th  /\  ta )  /\  E. i
( ch  /\  i  e.  n  /\  z  e.  ( f `  i
) ) ) )
117, 9, 103bitr4i 292 . . . . . . . . 9  |-  ( E. i ( th  /\  ta  /\  ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) )  <-> 
( th  /\  ta  /\ 
E. i ( ch 
/\  i  e.  n  /\  z  e.  (
f `  i )
) ) )
1211exbii 1774 . . . . . . . 8  |-  ( E. n E. i ( th  /\  ta  /\  ( ch  /\  i  e.  n  /\  z  e.  ( f `  i
) ) )  <->  E. n
( th  /\  ta  /\ 
E. i ( ch 
/\  i  e.  n  /\  z  e.  (
f `  i )
) ) )
13 19.42v 1918 . . . . . . . . 9  |-  ( E. n ( ( th 
/\  ta )  /\  E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) )  <-> 
( ( th  /\  ta )  /\  E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) ) )
1410exbii 1774 . . . . . . . . 9  |-  ( E. n ( th  /\  ta  /\  E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i
) ) )  <->  E. n
( ( th  /\  ta )  /\  E. i
( ch  /\  i  e.  n  /\  z  e.  ( f `  i
) ) ) )
15 df-3an 1039 . . . . . . . . 9  |-  ( ( th  /\  ta  /\  E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i
) ) )  <->  ( ( th  /\  ta )  /\  E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i
) ) ) )
1613, 14, 153bitr4i 292 . . . . . . . 8  |-  ( E. n ( th  /\  ta  /\  E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i
) ) )  <->  ( th  /\  ta  /\  E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) ) )
1712, 16bitri 264 . . . . . . 7  |-  ( E. n E. i ( th  /\  ta  /\  ( ch  /\  i  e.  n  /\  z  e.  ( f `  i
) ) )  <->  ( th  /\  ta  /\  E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) ) )
1817exbii 1774 . . . . . 6  |-  ( E. f E. n E. i ( th  /\  ta  /\  ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) )  <->  E. f ( th  /\  ta  /\  E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) ) )
19 19.42v 1918 . . . . . . 7  |-  ( E. f ( ( th 
/\  ta )  /\  E. n E. i ( ch 
/\  i  e.  n  /\  z  e.  (
f `  i )
) )  <->  ( ( th  /\  ta )  /\  E. f E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) ) )
2015exbii 1774 . . . . . . 7  |-  ( E. f ( th  /\  ta  /\  E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) )  <->  E. f ( ( th 
/\  ta )  /\  E. n E. i ( ch 
/\  i  e.  n  /\  z  e.  (
f `  i )
) ) )
21 df-3an 1039 . . . . . . 7  |-  ( ( th  /\  ta  /\  E. f E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) )  <-> 
( ( th  /\  ta )  /\  E. f E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i
) ) ) )
2219, 20, 213bitr4i 292 . . . . . 6  |-  ( E. f ( th  /\  ta  /\  E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) )  <-> 
( th  /\  ta  /\ 
E. f E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) ) )
2318, 22bitri 264 . . . . 5  |-  ( E. f E. n E. i ( th  /\  ta  /\  ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) )  <-> 
( th  /\  ta  /\ 
E. f E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) ) )
24 bnj255 30771 . . . . . . . 8  |-  ( ( th  /\  ta  /\  ch  /\  ze )  <->  ( th  /\  ta  /\  ( ch 
/\  ze ) ) )
25 bnj1033.7 . . . . . . . . . . 11  |-  ( ze  <->  ( i  e.  n  /\  z  e.  ( f `  i ) ) )
2625anbi2i 730 . . . . . . . . . 10  |-  ( ( ch  /\  ze )  <->  ( ch  /\  ( i  e.  n  /\  z  e.  ( f `  i
) ) ) )
27 3anass 1042 . . . . . . . . . 10  |-  ( ( ch  /\  i  e.  n  /\  z  e.  ( f `  i
) )  <->  ( ch  /\  ( i  e.  n  /\  z  e.  (
f `  i )
) ) )
2826, 27bitr4i 267 . . . . . . . . 9  |-  ( ( ch  /\  ze )  <->  ( ch  /\  i  e.  n  /\  z  e.  ( f `  i
) ) )
29283anbi3i 1255 . . . . . . . 8  |-  ( ( th  /\  ta  /\  ( ch  /\  ze )
)  <->  ( th  /\  ta  /\  ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) ) )
3024, 29bitri 264 . . . . . . 7  |-  ( ( th  /\  ta  /\  ch  /\  ze )  <->  ( th  /\  ta  /\  ( ch 
/\  i  e.  n  /\  z  e.  (
f `  i )
) ) )
31303exbii 1776 . . . . . 6  |-  ( E. f E. n E. i ( th  /\  ta  /\  ch  /\  ze ) 
<->  E. f E. n E. i ( th  /\  ta  /\  ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) ) )
32 bnj1033.10 . . . . . 6  |-  ( E. f E. n E. i ( th  /\  ta  /\  ch  /\  ze )  ->  z  e.  B
)
3331, 32sylbir 225 . . . . 5  |-  ( E. f E. n E. i ( th  /\  ta  /\  ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) )  ->  z  e.  B
)
3423, 33sylbir 225 . . . 4  |-  ( ( th  /\  ta  /\  E. f E. n E. i ( ch  /\  i  e.  n  /\  z  e.  ( f `  i ) ) )  ->  z  e.  B
)
356, 34syl3an3b 1364 . . 3  |-  ( ( th  /\  ta  /\  z  e.  trCl ( X ,  A ,  R
) )  ->  z  e.  B )
36353expia 1267 . 2  |-  ( ( th  /\  ta )  ->  ( z  e.  trCl ( X ,  A ,  R )  ->  z  e.  B ) )
3736ssrdv 3609 1  |-  ( ( th  /\  ta )  ->  trCl ( X ,  A ,  R )  C_  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   U_ciun 4520   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065    /\ w-bnj17 30752    predc-bnj14 30754    FrSe w-bnj15 30758    trClc-bnj18 30760    TrFow-bnj19 30762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-iun 4522  df-fn 5891  df-bnj17 30753  df-bnj18 30761
This theorem is referenced by:  bnj1034  31038
  Copyright terms: Public domain W3C validator