| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caovlem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma used in real number construction. (Contributed by NM, 26-Aug-1995.) |
| Ref | Expression |
|---|---|
| caovdir.1 |
|
| caovdir.2 |
|
| caovdir.3 |
|
| caovdir.com |
|
| caovdir.distr |
|
| caovdl.4 |
|
| caovdl.5 |
|
| caovdl.ass |
|
| caovdl2.6 |
|
| caovdl2.com |
|
| caovdl2.ass |
|
| Ref | Expression |
|---|---|
| caovlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 6678 |
. . 3
| |
| 2 | ovex 6678 |
. . 3
| |
| 3 | ovex 6678 |
. . 3
| |
| 4 | caovdl2.com |
. . 3
| |
| 5 | caovdl2.ass |
. . 3
| |
| 6 | ovex 6678 |
. . 3
| |
| 7 | 1, 2, 3, 4, 5, 6 | caov42 6867 |
. 2
|
| 8 | caovdir.1 |
. . . 4
| |
| 9 | caovdir.2 |
. . . 4
| |
| 10 | caovdir.3 |
. . . 4
| |
| 11 | caovdir.com |
. . . 4
| |
| 12 | caovdir.distr |
. . . 4
| |
| 13 | caovdl.4 |
. . . 4
| |
| 14 | caovdl.5 |
. . . 4
| |
| 15 | caovdl.ass |
. . . 4
| |
| 16 | 8, 9, 10, 11, 12, 13, 14, 15 | caovdilem 6869 |
. . 3
|
| 17 | caovdl2.6 |
. . . 4
| |
| 18 | 8, 9, 13, 11, 12, 10, 17, 15 | caovdilem 6869 |
. . 3
|
| 19 | 16, 18 | oveq12i 6662 |
. 2
|
| 20 | ovex 6678 |
. . . 4
| |
| 21 | ovex 6678 |
. . . 4
| |
| 22 | 8, 20, 21, 12 | caovdi 6853 |
. . 3
|
| 23 | ovex 6678 |
. . . 4
| |
| 24 | ovex 6678 |
. . . 4
| |
| 25 | 9, 23, 24, 12 | caovdi 6853 |
. . 3
|
| 26 | 22, 25 | oveq12i 6662 |
. 2
|
| 27 | 7, 19, 26 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: mulasssr 9911 |
| Copyright terms: Public domain | W3C validator |