| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caovmo | Structured version Visualization version Unicode version | ||
| Description: Uniqueness of inverse element in commutative, associative operation with identity. Remark in proof of Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 4-Mar-1996.) |
| Ref | Expression |
|---|---|
| caovmo.2 |
|
| caovmo.dom |
|
| caovmo.3 |
|
| caovmo.com |
|
| caovmo.ass |
|
| caovmo.id |
|
| Ref | Expression |
|---|---|
| caovmo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6657 |
. . . . . 6
| |
| 2 | 1 | eqeq1d 2624 |
. . . . 5
|
| 3 | 2 | mobidv 2491 |
. . . 4
|
| 4 | oveq2 6658 |
. . . . . . 7
| |
| 5 | 4 | eqeq1d 2624 |
. . . . . 6
|
| 6 | 5 | mo4 2517 |
. . . . 5
|
| 7 | simpr 477 |
. . . . . . . . 9
| |
| 8 | 7 | oveq2d 6666 |
. . . . . . . 8
|
| 9 | simpl 473 |
. . . . . . . . . 10
| |
| 10 | 9 | oveq1d 6665 |
. . . . . . . . 9
|
| 11 | vex 3203 |
. . . . . . . . . . 11
| |
| 12 | vex 3203 |
. . . . . . . . . . 11
| |
| 13 | vex 3203 |
. . . . . . . . . . 11
| |
| 14 | caovmo.ass |
. . . . . . . . . . 11
| |
| 15 | 11, 12, 13, 14 | caovass 6834 |
. . . . . . . . . 10
|
| 16 | caovmo.com |
. . . . . . . . . . 11
| |
| 17 | 11, 12, 13, 16, 14 | caov12 6862 |
. . . . . . . . . 10
|
| 18 | 15, 17 | eqtri 2644 |
. . . . . . . . 9
|
| 19 | caovmo.2 |
. . . . . . . . . . 11
| |
| 20 | 19 | elexi 3213 |
. . . . . . . . . 10
|
| 21 | 20, 13, 16 | caovcom 6831 |
. . . . . . . . 9
|
| 22 | 10, 18, 21 | 3eqtr3g 2679 |
. . . . . . . 8
|
| 23 | 8, 22 | eqtr3d 2658 |
. . . . . . 7
|
| 24 | 9, 19 | syl6eqel 2709 |
. . . . . . . . . 10
|
| 25 | caovmo.dom |
. . . . . . . . . . 11
| |
| 26 | caovmo.3 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | ndmovrcl 6820 |
. . . . . . . . . 10
|
| 28 | 24, 27 | syl 17 |
. . . . . . . . 9
|
| 29 | 28 | simprd 479 |
. . . . . . . 8
|
| 30 | oveq1 6657 |
. . . . . . . . . 10
| |
| 31 | id 22 |
. . . . . . . . . 10
| |
| 32 | 30, 31 | eqeq12d 2637 |
. . . . . . . . 9
|
| 33 | caovmo.id |
. . . . . . . . 9
| |
| 34 | 32, 33 | vtoclga 3272 |
. . . . . . . 8
|
| 35 | 29, 34 | syl 17 |
. . . . . . 7
|
| 36 | 7, 19 | syl6eqel 2709 |
. . . . . . . . . 10
|
| 37 | 25, 26 | ndmovrcl 6820 |
. . . . . . . . . 10
|
| 38 | 36, 37 | syl 17 |
. . . . . . . . 9
|
| 39 | 38 | simprd 479 |
. . . . . . . 8
|
| 40 | oveq1 6657 |
. . . . . . . . . 10
| |
| 41 | id 22 |
. . . . . . . . . 10
| |
| 42 | 40, 41 | eqeq12d 2637 |
. . . . . . . . 9
|
| 43 | 42, 33 | vtoclga 3272 |
. . . . . . . 8
|
| 44 | 39, 43 | syl 17 |
. . . . . . 7
|
| 45 | 23, 35, 44 | 3eqtr3d 2664 |
. . . . . 6
|
| 46 | 45 | ax-gen 1722 |
. . . . 5
|
| 47 | 6, 46 | mpgbir 1726 |
. . . 4
|
| 48 | 3, 47 | vtoclg 3266 |
. . 3
|
| 49 | moanimv 2531 |
. . 3
| |
| 50 | 48, 49 | mpbir 221 |
. 2
|
| 51 | eleq1 2689 |
. . . . . . 7
| |
| 52 | 19, 51 | mpbiri 248 |
. . . . . 6
|
| 53 | 25, 26 | ndmovrcl 6820 |
. . . . . 6
|
| 54 | 52, 53 | syl 17 |
. . . . 5
|
| 55 | 54 | simpld 475 |
. . . 4
|
| 56 | 55 | ancri 575 |
. . 3
|
| 57 | 56 | moimi 2520 |
. 2
|
| 58 | 50, 57 | ax-mp 5 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-dm 5124 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: recmulnq 9786 |
| Copyright terms: Public domain | W3C validator |