MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviotav Structured version   Visualization version   Unicode version

Theorem cbviotav 5857
Description: Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
Hypothesis
Ref Expression
cbviotav.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbviotav  |-  ( iota
x ph )  =  ( iota y ps )
Distinct variable groups:    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbviotav
StepHypRef Expression
1 cbviotav.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
2 nfv 1843 . 2  |-  F/ y
ph
3 nfv 1843 . 2  |-  F/ x ps
41, 2, 3cbviota 5856 1  |-  ( iota
x ph )  =  ( iota y ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483   iotacio 5849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-sn 4178  df-uni 4437  df-iota 5851
This theorem is referenced by:  oeeui  7682  ellimciota  39846  fourierdlem96  40419  fourierdlem97  40420  fourierdlem98  40421  fourierdlem99  40422  fourierdlem105  40428  fourierdlem106  40429  fourierdlem108  40431  fourierdlem110  40433  fourierdlem112  40435  fourierdlem113  40436  fourierdlem115  40438
  Copyright terms: Public domain W3C validator