Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem108 Structured version   Visualization version   Unicode version

Theorem fourierdlem108 40431
Description: The integral of a piecewise continuous periodic function  F is unchanged if the domain is shifted by any positive value  X. This lemma generalizes fourierdlem92 40415 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem108.a  |-  ( ph  ->  A  e.  RR )
fourierdlem108.b  |-  ( ph  ->  B  e.  RR )
fourierdlem108.t  |-  T  =  ( B  -  A
)
fourierdlem108.x  |-  ( ph  ->  X  e.  RR+ )
fourierdlem108.p  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  A  /\  ( p `
 m )  =  B )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
fourierdlem108.m  |-  ( ph  ->  M  e.  NN )
fourierdlem108.q  |-  ( ph  ->  Q  e.  ( P `
 M ) )
fourierdlem108.f  |-  ( ph  ->  F : RR --> CC )
fourierdlem108.fper  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  T ) )  =  ( F `  x
) )
fourierdlem108.fcn  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  e.  ( ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) -cn-> CC ) )
fourierdlem108.r  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  R  e.  ( ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 i ) ) )
fourierdlem108.l  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  L  e.  ( ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 ( i  +  1 ) ) ) )
Assertion
Ref Expression
fourierdlem108  |-  ( ph  ->  S. ( ( A  -  X ) [,] ( B  -  X
) ) ( F `
 x )  _d x  =  S. ( A [,] B ) ( F `  x
)  _d x )
Distinct variable groups:    A, i, x    A, m, p, i    B, i, x    B, m, p    i, F, x   
x, L    i, M, x    m, M, p    Q, i, x    Q, m, p   
x, R    T, i, x    T, m, p    i, X, x    m, X, p    ph, i, x
Allowed substitution hints:    ph( m, p)    P( x, i, m, p)    R( i, m, p)    F( m, p)    L( i, m, p)

Proof of Theorem fourierdlem108
Dummy variables  k 
f  g  w  y  j  z  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem108.a . 2  |-  ( ph  ->  A  e.  RR )
2 fourierdlem108.b . 2  |-  ( ph  ->  B  e.  RR )
3 fourierdlem108.t . 2  |-  T  =  ( B  -  A
)
4 fourierdlem108.x . 2  |-  ( ph  ->  X  e.  RR+ )
5 fourierdlem108.p . 2  |-  P  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  ( 0 ... m ) )  |  ( ( ( p `
 0 )  =  A  /\  ( p `
 m )  =  B )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
6 fourierdlem108.m . 2  |-  ( ph  ->  M  e.  NN )
7 fourierdlem108.q . 2  |-  ( ph  ->  Q  e.  ( P `
 M ) )
8 fourierdlem108.f . 2  |-  ( ph  ->  F : RR --> CC )
9 fourierdlem108.fper . 2  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 ( x  +  T ) )  =  ( F `  x
) )
10 fourierdlem108.fcn . 2  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  ( F  |`  ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) )  e.  ( ( ( Q `  i ) (,) ( Q `  ( i  +  1 ) ) ) -cn-> CC ) )
11 fourierdlem108.r . 2  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  R  e.  ( ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 i ) ) )
12 fourierdlem108.l . 2  |-  ( (
ph  /\  i  e.  ( 0..^ M ) )  ->  L  e.  ( ( F  |`  (
( Q `  i
) (,) ( Q `
 ( i  +  1 ) ) ) ) lim CC  ( Q `
 ( i  +  1 ) ) ) )
13 eqid 2622 . 2  |-  ( m  e.  NN  |->  { p  e.  ( RR  ^m  (
0 ... m ) )  |  ( ( ( p `  0 )  =  ( A  -  X )  /\  (
p `  m )  =  A )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )  =  ( m  e.  NN  |->  { p  e.  ( RR  ^m  (
0 ... m ) )  |  ( ( ( p `  0 )  =  ( A  -  X )  /\  (
p `  m )  =  A )  /\  A. i  e.  ( 0..^ m ) ( p `
 i )  < 
( p `  (
i  +  1 ) ) ) } )
14 oveq1 6657 . . . . . 6  |-  ( w  =  y  ->  (
w  +  ( k  x.  T ) )  =  ( y  +  ( k  x.  T
) ) )
1514eleq1d 2686 . . . . 5  |-  ( w  =  y  ->  (
( w  +  ( k  x.  T ) )  e.  ran  Q  <->  ( y  +  ( k  x.  T ) )  e.  ran  Q ) )
1615rexbidv 3052 . . . 4  |-  ( w  =  y  ->  ( E. k  e.  ZZ  ( w  +  (
k  x.  T ) )  e.  ran  Q  <->  E. k  e.  ZZ  (
y  +  ( k  x.  T ) )  e.  ran  Q ) )
1716cbvrabv 3199 . . 3  |-  { w  e.  ( ( A  -  X ) [,] A
)  |  E. k  e.  ZZ  ( w  +  ( k  x.  T
) )  e.  ran  Q }  =  { y  e.  ( ( A  -  X ) [,] A )  |  E. k  e.  ZZ  (
y  +  ( k  x.  T ) )  e.  ran  Q }
1817uneq2i 3764 . 2  |-  ( { ( A  -  X
) ,  A }  u.  { w  e.  ( ( A  -  X
) [,] A )  |  E. k  e.  ZZ  ( w  +  ( k  x.  T
) )  e.  ran  Q } )  =  ( { ( A  -  X ) ,  A }  u.  { y  e.  ( ( A  -  X ) [,] A
)  |  E. k  e.  ZZ  ( y  +  ( k  x.  T
) )  e.  ran  Q } )
19 oveq1 6657 . . . . . . . . . 10  |-  ( l  =  k  ->  (
l  x.  T )  =  ( k  x.  T ) )
2019oveq2d 6666 . . . . . . . . 9  |-  ( l  =  k  ->  (
w  +  ( l  x.  T ) )  =  ( w  +  ( k  x.  T
) ) )
2120eleq1d 2686 . . . . . . . 8  |-  ( l  =  k  ->  (
( w  +  ( l  x.  T ) )  e.  ran  Q  <->  ( w  +  ( k  x.  T ) )  e.  ran  Q ) )
2221cbvrexv 3172 . . . . . . 7  |-  ( E. l  e.  ZZ  (
w  +  ( l  x.  T ) )  e.  ran  Q  <->  E. k  e.  ZZ  ( w  +  ( k  x.  T
) )  e.  ran  Q )
2322rgenw 2924 . . . . . 6  |-  A. w  e.  ( ( A  -  X ) [,] A
) ( E. l  e.  ZZ  ( w  +  ( l  x.  T
) )  e.  ran  Q  <->  E. k  e.  ZZ  ( w  +  (
k  x.  T ) )  e.  ran  Q
)
24 rabbi 3120 . . . . . 6  |-  ( A. w  e.  ( ( A  -  X ) [,] A ) ( E. l  e.  ZZ  (
w  +  ( l  x.  T ) )  e.  ran  Q  <->  E. k  e.  ZZ  ( w  +  ( k  x.  T
) )  e.  ran  Q )  <->  { w  e.  ( ( A  -  X
) [,] A )  |  E. l  e.  ZZ  ( w  +  ( l  x.  T
) )  e.  ran  Q }  =  { w  e.  ( ( A  -  X ) [,] A
)  |  E. k  e.  ZZ  ( w  +  ( k  x.  T
) )  e.  ran  Q } )
2523, 24mpbi 220 . . . . 5  |-  { w  e.  ( ( A  -  X ) [,] A
)  |  E. l  e.  ZZ  ( w  +  ( l  x.  T
) )  e.  ran  Q }  =  { w  e.  ( ( A  -  X ) [,] A
)  |  E. k  e.  ZZ  ( w  +  ( k  x.  T
) )  e.  ran  Q }
2625uneq2i 3764 . . . 4  |-  ( { ( A  -  X
) ,  A }  u.  { w  e.  ( ( A  -  X
) [,] A )  |  E. l  e.  ZZ  ( w  +  ( l  x.  T
) )  e.  ran  Q } )  =  ( { ( A  -  X ) ,  A }  u.  { w  e.  ( ( A  -  X ) [,] A
)  |  E. k  e.  ZZ  ( w  +  ( k  x.  T
) )  e.  ran  Q } )
2726fveq2i 6194 . . 3  |-  ( # `  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. l  e.  ZZ  ( w  +  (
l  x.  T ) )  e.  ran  Q } ) )  =  ( # `  ( { ( A  -  X ) ,  A }  u.  { w  e.  ( ( A  -  X ) [,] A
)  |  E. k  e.  ZZ  ( w  +  ( k  x.  T
) )  e.  ran  Q } ) )
2827oveq1i 6660 . 2  |-  ( (
# `  ( {
( A  -  X
) ,  A }  u.  { w  e.  ( ( A  -  X
) [,] A )  |  E. l  e.  ZZ  ( w  +  ( l  x.  T
) )  e.  ran  Q } ) )  - 
1 )  =  ( ( # `  ( { ( A  -  X ) ,  A }  u.  { w  e.  ( ( A  -  X ) [,] A
)  |  E. k  e.  ZZ  ( w  +  ( k  x.  T
) )  e.  ran  Q } ) )  - 
1 )
29 isoeq5 6571 . . . . 5  |-  ( ( { ( A  -  X ) ,  A }  u.  { w  e.  ( ( A  -  X ) [,] A
)  |  E. l  e.  ZZ  ( w  +  ( l  x.  T
) )  e.  ran  Q } )  =  ( { ( A  -  X ) ,  A }  u.  { w  e.  ( ( A  -  X ) [,] A
)  |  E. k  e.  ZZ  ( w  +  ( k  x.  T
) )  e.  ran  Q } )  ->  (
g  Isom  <  ,  <  ( ( 0 ... (
( # `  ( { ( A  -  X
) ,  A }  u.  { w  e.  ( ( A  -  X
) [,] A )  |  E. l  e.  ZZ  ( w  +  ( l  x.  T
) )  e.  ran  Q } ) )  - 
1 ) ) ,  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. l  e.  ZZ  ( w  +  (
l  x.  T ) )  e.  ran  Q } ) )  <->  g  Isom  <  ,  <  ( ( 0 ... ( ( # `  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. l  e.  ZZ  ( w  +  (
l  x.  T ) )  e.  ran  Q } ) )  - 
1 ) ) ,  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. k  e.  ZZ  ( w  +  (
k  x.  T ) )  e.  ran  Q } ) ) ) )
3026, 29ax-mp 5 . . . 4  |-  ( g 
Isom  <  ,  <  (
( 0 ... (
( # `  ( { ( A  -  X
) ,  A }  u.  { w  e.  ( ( A  -  X
) [,] A )  |  E. l  e.  ZZ  ( w  +  ( l  x.  T
) )  e.  ran  Q } ) )  - 
1 ) ) ,  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. l  e.  ZZ  ( w  +  (
l  x.  T ) )  e.  ran  Q } ) )  <->  g  Isom  <  ,  <  ( ( 0 ... ( ( # `  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. l  e.  ZZ  ( w  +  (
l  x.  T ) )  e.  ran  Q } ) )  - 
1 ) ) ,  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. k  e.  ZZ  ( w  +  (
k  x.  T ) )  e.  ran  Q } ) ) )
31 isoeq1 6567 . . . 4  |-  ( g  =  f  ->  (
g  Isom  <  ,  <  ( ( 0 ... (
( # `  ( { ( A  -  X
) ,  A }  u.  { w  e.  ( ( A  -  X
) [,] A )  |  E. l  e.  ZZ  ( w  +  ( l  x.  T
) )  e.  ran  Q } ) )  - 
1 ) ) ,  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. k  e.  ZZ  ( w  +  (
k  x.  T ) )  e.  ran  Q } ) )  <->  f  Isom  <  ,  <  ( ( 0 ... ( ( # `  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. l  e.  ZZ  ( w  +  (
l  x.  T ) )  e.  ran  Q } ) )  - 
1 ) ) ,  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. k  e.  ZZ  ( w  +  (
k  x.  T ) )  e.  ran  Q } ) ) ) )
3230, 31syl5bb 272 . . 3  |-  ( g  =  f  ->  (
g  Isom  <  ,  <  ( ( 0 ... (
( # `  ( { ( A  -  X
) ,  A }  u.  { w  e.  ( ( A  -  X
) [,] A )  |  E. l  e.  ZZ  ( w  +  ( l  x.  T
) )  e.  ran  Q } ) )  - 
1 ) ) ,  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. l  e.  ZZ  ( w  +  (
l  x.  T ) )  e.  ran  Q } ) )  <->  f  Isom  <  ,  <  ( ( 0 ... ( ( # `  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. l  e.  ZZ  ( w  +  (
l  x.  T ) )  e.  ran  Q } ) )  - 
1 ) ) ,  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. k  e.  ZZ  ( w  +  (
k  x.  T ) )  e.  ran  Q } ) ) ) )
3332cbviotav 5857 . 2  |-  ( iota g g  Isom  <  ,  <  ( ( 0 ... ( ( # `  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. l  e.  ZZ  ( w  +  (
l  x.  T ) )  e.  ran  Q } ) )  - 
1 ) ) ,  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. l  e.  ZZ  ( w  +  (
l  x.  T ) )  e.  ran  Q } ) ) )  =  ( iota f
f  Isom  <  ,  <  ( ( 0 ... (
( # `  ( { ( A  -  X
) ,  A }  u.  { w  e.  ( ( A  -  X
) [,] A )  |  E. l  e.  ZZ  ( w  +  ( l  x.  T
) )  e.  ran  Q } ) )  - 
1 ) ) ,  ( { ( A  -  X ) ,  A }  u.  {
w  e.  ( ( A  -  X ) [,] A )  |  E. k  e.  ZZ  ( w  +  (
k  x.  T ) )  e.  ran  Q } ) ) )
34 id 22 . . . 4  |-  ( w  =  x  ->  w  =  x )
35 oveq2 6658 . . . . . . 7  |-  ( w  =  x  ->  ( B  -  w )  =  ( B  -  x ) )
3635oveq1d 6665 . . . . . 6  |-  ( w  =  x  ->  (
( B  -  w
)  /  T )  =  ( ( B  -  x )  /  T ) )
3736fveq2d 6195 . . . . 5  |-  ( w  =  x  ->  ( |_ `  ( ( B  -  w )  /  T ) )  =  ( |_ `  (
( B  -  x
)  /  T ) ) )
3837oveq1d 6665 . . . 4  |-  ( w  =  x  ->  (
( |_ `  (
( B  -  w
)  /  T ) )  x.  T )  =  ( ( |_
`  ( ( B  -  x )  /  T ) )  x.  T ) )
3934, 38oveq12d 6668 . . 3  |-  ( w  =  x  ->  (
w  +  ( ( |_ `  ( ( B  -  w )  /  T ) )  x.  T ) )  =  ( x  +  ( ( |_ `  ( ( B  -  x )  /  T
) )  x.  T
) ) )
4039cbvmptv 4750 . 2  |-  ( w  e.  RR  |->  ( w  +  ( ( |_
`  ( ( B  -  w )  /  T ) )  x.  T ) ) )  =  ( x  e.  RR  |->  ( x  +  ( ( |_ `  ( ( B  -  x )  /  T
) )  x.  T
) ) )
41 eqeq1 2626 . . . 4  |-  ( w  =  y  ->  (
w  =  B  <->  y  =  B ) )
42 id 22 . . . 4  |-  ( w  =  y  ->  w  =  y )
4341, 42ifbieq2d 4111 . . 3  |-  ( w  =  y  ->  if ( w  =  B ,  A ,  w )  =  if ( y  =  B ,  A ,  y ) )
4443cbvmptv 4750 . 2  |-  ( w  e.  ( A (,] B )  |->  if ( w  =  B ,  A ,  w )
)  =  ( y  e.  ( A (,] B )  |->  if ( y  =  B ,  A ,  y )
)
45 fveq2 6191 . . . . . . . 8  |-  ( z  =  x  ->  (
( w  e.  RR  |->  ( w  +  (
( |_ `  (
( B  -  w
)  /  T ) )  x.  T ) ) ) `  z
)  =  ( ( w  e.  RR  |->  ( w  +  ( ( |_ `  ( ( B  -  w )  /  T ) )  x.  T ) ) ) `  x ) )
4645fveq2d 6195 . . . . . . 7  |-  ( z  =  x  ->  (
( w  e.  ( A (,] B ) 
|->  if ( w  =  B ,  A ,  w ) ) `  ( ( w  e.  RR  |->  ( w  +  ( ( |_ `  ( ( B  -  w )  /  T
) )  x.  T
) ) ) `  z ) )  =  ( ( w  e.  ( A (,] B
)  |->  if ( w  =  B ,  A ,  w ) ) `  ( ( w  e.  RR  |->  ( w  +  ( ( |_ `  ( ( B  -  w )  /  T
) )  x.  T
) ) ) `  x ) ) )
4746breq2d 4665 . . . . . 6  |-  ( z  =  x  ->  (
( Q `  j
)  <_  ( (
w  e.  ( A (,] B )  |->  if ( w  =  B ,  A ,  w
) ) `  (
( w  e.  RR  |->  ( w  +  (
( |_ `  (
( B  -  w
)  /  T ) )  x.  T ) ) ) `  z
) )  <->  ( Q `  j )  <_  (
( w  e.  ( A (,] B ) 
|->  if ( w  =  B ,  A ,  w ) ) `  ( ( w  e.  RR  |->  ( w  +  ( ( |_ `  ( ( B  -  w )  /  T
) )  x.  T
) ) ) `  x ) ) ) )
4847rabbidv 3189 . . . . 5  |-  ( z  =  x  ->  { j  e.  ( 0..^ M )  |  ( Q `
 j )  <_ 
( ( w  e.  ( A (,] B
)  |->  if ( w  =  B ,  A ,  w ) ) `  ( ( w  e.  RR  |->  ( w  +  ( ( |_ `  ( ( B  -  w )  /  T
) )  x.  T
) ) ) `  z ) ) }  =  { j  e.  ( 0..^ M )  |  ( Q `  j )  <_  (
( w  e.  ( A (,] B ) 
|->  if ( w  =  B ,  A ,  w ) ) `  ( ( w  e.  RR  |->  ( w  +  ( ( |_ `  ( ( B  -  w )  /  T
) )  x.  T
) ) ) `  x ) ) } )
49 fveq2 6191 . . . . . . 7  |-  ( j  =  i  ->  ( Q `  j )  =  ( Q `  i ) )
5049breq1d 4663 . . . . . 6  |-  ( j  =  i  ->  (
( Q `  j
)  <_  ( (
w  e.  ( A (,] B )  |->  if ( w  =  B ,  A ,  w
) ) `  (
( w  e.  RR  |->  ( w  +  (
( |_ `  (
( B  -  w
)  /  T ) )  x.  T ) ) ) `  x
) )  <->  ( Q `  i )  <_  (
( w  e.  ( A (,] B ) 
|->  if ( w  =  B ,  A ,  w ) ) `  ( ( w  e.  RR  |->  ( w  +  ( ( |_ `  ( ( B  -  w )  /  T
) )  x.  T
) ) ) `  x ) ) ) )
5150cbvrabv 3199 . . . . 5  |-  { j  e.  ( 0..^ M )  |  ( Q `
 j )  <_ 
( ( w  e.  ( A (,] B
)  |->  if ( w  =  B ,  A ,  w ) ) `  ( ( w  e.  RR  |->  ( w  +  ( ( |_ `  ( ( B  -  w )  /  T
) )  x.  T
) ) ) `  x ) ) }  =  { i  e.  ( 0..^ M )  |  ( Q `  i )  <_  (
( w  e.  ( A (,] B ) 
|->  if ( w  =  B ,  A ,  w ) ) `  ( ( w  e.  RR  |->  ( w  +  ( ( |_ `  ( ( B  -  w )  /  T
) )  x.  T
) ) ) `  x ) ) }
5248, 51syl6eq 2672 . . . 4  |-  ( z  =  x  ->  { j  e.  ( 0..^ M )  |  ( Q `
 j )  <_ 
( ( w  e.  ( A (,] B
)  |->  if ( w  =  B ,  A ,  w ) ) `  ( ( w  e.  RR  |->  ( w  +  ( ( |_ `  ( ( B  -  w )  /  T
) )  x.  T
) ) ) `  z ) ) }  =  { i  e.  ( 0..^ M )  |  ( Q `  i )  <_  (
( w  e.  ( A (,] B ) 
|->  if ( w  =  B ,  A ,  w ) ) `  ( ( w  e.  RR  |->  ( w  +  ( ( |_ `  ( ( B  -  w )  /  T
) )  x.  T
) ) ) `  x ) ) } )
5352supeq1d 8352 . . 3  |-  ( z  =  x  ->  sup ( { j  e.  ( 0..^ M )  |  ( Q `  j
)  <_  ( (
w  e.  ( A (,] B )  |->  if ( w  =  B ,  A ,  w
) ) `  (
( w  e.  RR  |->  ( w  +  (
( |_ `  (
( B  -  w
)  /  T ) )  x.  T ) ) ) `  z
) ) } ,  RR ,  <  )  =  sup ( { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( ( w  e.  ( A (,] B
)  |->  if ( w  =  B ,  A ,  w ) ) `  ( ( w  e.  RR  |->  ( w  +  ( ( |_ `  ( ( B  -  w )  /  T
) )  x.  T
) ) ) `  x ) ) } ,  RR ,  <  ) )
5453cbvmptv 4750 . 2  |-  ( z  e.  RR  |->  sup ( { j  e.  ( 0..^ M )  |  ( Q `  j
)  <_  ( (
w  e.  ( A (,] B )  |->  if ( w  =  B ,  A ,  w
) ) `  (
( w  e.  RR  |->  ( w  +  (
( |_ `  (
( B  -  w
)  /  T ) )  x.  T ) ) ) `  z
) ) } ,  RR ,  <  ) )  =  ( x  e.  RR  |->  sup ( { i  e.  ( 0..^ M )  |  ( Q `
 i )  <_ 
( ( w  e.  ( A (,] B
)  |->  if ( w  =  B ,  A ,  w ) ) `  ( ( w  e.  RR  |->  ( w  +  ( ( |_ `  ( ( B  -  w )  /  T
) )  x.  T
) ) ) `  x ) ) } ,  RR ,  <  ) )
551, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 28, 33, 40, 44, 54fourierdlem107 40430 1  |-  ( ph  ->  S. ( ( A  -  X ) [,] ( B  -  X
) ) ( F `
 x )  _d x  =  S. ( A [,] B ) ( F `  x
)  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    u. cun 3572   ifcif 4086   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    |` cres 5116   iotacio 5849   -->wf 5884   ` cfv 5888    Isom wiso 5889  (class class class)co 6650    ^m cmap 7857   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   RR+crp 11832   (,)cioo 12175   (,]cioc 12176   [,]cicc 12178   ...cfz 12326  ..^cfzo 12465   |_cfl 12591   #chash 13117   -cn->ccncf 22679   S.citg 23387   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ditg 23611  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem109  40432
  Copyright terms: Public domain W3C validator