| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrabcsf | Structured version Visualization version Unicode version | ||
| Description: A more general version of cbvrab 3198 with no distinct variable restrictions. (Contributed by Andrew Salmon, 13-Jul-2011.) |
| Ref | Expression |
|---|---|
| cbvralcsf.1 |
|
| cbvralcsf.2 |
|
| cbvralcsf.3 |
|
| cbvralcsf.4 |
|
| cbvralcsf.5 |
|
| cbvralcsf.6 |
|
| Ref | Expression |
|---|---|
| cbvrabcsf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . 4
| |
| 2 | nfcsb1v 3549 |
. . . . . 6
| |
| 3 | 2 | nfcri 2758 |
. . . . 5
|
| 4 | nfs1v 2437 |
. . . . 5
| |
| 5 | 3, 4 | nfan 1828 |
. . . 4
|
| 6 | id 22 |
. . . . . 6
| |
| 7 | csbeq1a 3542 |
. . . . . 6
| |
| 8 | 6, 7 | eleq12d 2695 |
. . . . 5
|
| 9 | sbequ12 2111 |
. . . . 5
| |
| 10 | 8, 9 | anbi12d 747 |
. . . 4
|
| 11 | 1, 5, 10 | cbvab 2746 |
. . 3
|
| 12 | nfcv 2764 |
. . . . . . 7
| |
| 13 | cbvralcsf.1 |
. . . . . . 7
| |
| 14 | 12, 13 | nfcsb 3551 |
. . . . . 6
|
| 15 | 14 | nfcri 2758 |
. . . . 5
|
| 16 | cbvralcsf.3 |
. . . . . 6
| |
| 17 | 16 | nfsb 2440 |
. . . . 5
|
| 18 | 15, 17 | nfan 1828 |
. . . 4
|
| 19 | nfv 1843 |
. . . 4
| |
| 20 | id 22 |
. . . . . 6
| |
| 21 | csbeq1 3536 |
. . . . . . 7
| |
| 22 | df-csb 3534 |
. . . . . . . 8
| |
| 23 | cbvralcsf.2 |
. . . . . . . . . . . 12
| |
| 24 | 23 | nfcri 2758 |
. . . . . . . . . . 11
|
| 25 | cbvralcsf.5 |
. . . . . . . . . . . 12
| |
| 26 | 25 | eleq2d 2687 |
. . . . . . . . . . 11
|
| 27 | 24, 26 | sbie 2408 |
. . . . . . . . . 10
|
| 28 | sbsbc 3439 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | bitr3i 266 |
. . . . . . . . 9
|
| 30 | 29 | abbi2i 2738 |
. . . . . . . 8
|
| 31 | 22, 30 | eqtr4i 2647 |
. . . . . . 7
|
| 32 | 21, 31 | syl6eq 2672 |
. . . . . 6
|
| 33 | 20, 32 | eleq12d 2695 |
. . . . 5
|
| 34 | sbequ 2376 |
. . . . . 6
| |
| 35 | cbvralcsf.4 |
. . . . . . 7
| |
| 36 | cbvralcsf.6 |
. . . . . . 7
| |
| 37 | 35, 36 | sbie 2408 |
. . . . . 6
|
| 38 | 34, 37 | syl6bb 276 |
. . . . 5
|
| 39 | 33, 38 | anbi12d 747 |
. . . 4
|
| 40 | 18, 19, 39 | cbvab 2746 |
. . 3
|
| 41 | 11, 40 | eqtri 2644 |
. 2
|
| 42 | df-rab 2921 |
. 2
| |
| 43 | df-rab 2921 |
. 2
| |
| 44 | 41, 42, 43 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-sbc 3436 df-csb 3534 |
| This theorem is referenced by: cbvrabv2 39311 smfsup 41020 smfinflem 41023 smfinf 41024 |
| Copyright terms: Public domain | W3C validator |