MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvreu Structured version   Visualization version   Unicode version

Theorem cbvreu 3169
Description: Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
cbvral.1  |-  F/ y
ph
cbvral.2  |-  F/ x ps
cbvral.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvreu  |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
Distinct variable groups:    x, A    y, A
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem cbvreu
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . 4  |-  F/ z ( x  e.  A  /\  ph )
21sb8eu 2503 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  <->  E! z [ z  /  x ] ( x  e.  A  /\  ph )
)
3 sban 2399 . . . 4  |-  ( [ z  /  x ]
( x  e.  A  /\  ph )  <->  ( [
z  /  x ]
x  e.  A  /\  [ z  /  x ] ph ) )
43eubii 2492 . . 3  |-  ( E! z [ z  /  x ] ( x  e.  A  /\  ph )  <->  E! z ( [ z  /  x ] x  e.  A  /\  [ z  /  x ] ph ) )
5 clelsb3 2729 . . . . . 6  |-  ( [ z  /  x ]
x  e.  A  <->  z  e.  A )
65anbi1i 731 . . . . 5  |-  ( ( [ z  /  x ] x  e.  A  /\  [ z  /  x ] ph )  <->  ( z  e.  A  /\  [ z  /  x ] ph ) )
76eubii 2492 . . . 4  |-  ( E! z ( [ z  /  x ] x  e.  A  /\  [ z  /  x ] ph ) 
<->  E! z ( z  e.  A  /\  [
z  /  x ] ph ) )
8 nfv 1843 . . . . . 6  |-  F/ y  z  e.  A
9 cbvral.1 . . . . . . 7  |-  F/ y
ph
109nfsb 2440 . . . . . 6  |-  F/ y [ z  /  x ] ph
118, 10nfan 1828 . . . . 5  |-  F/ y ( z  e.  A  /\  [ z  /  x ] ph )
12 nfv 1843 . . . . 5  |-  F/ z ( y  e.  A  /\  ps )
13 eleq1 2689 . . . . . 6  |-  ( z  =  y  ->  (
z  e.  A  <->  y  e.  A ) )
14 sbequ 2376 . . . . . . 7  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
15 cbvral.2 . . . . . . . 8  |-  F/ x ps
16 cbvral.3 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
1715, 16sbie 2408 . . . . . . 7  |-  ( [ y  /  x ] ph 
<->  ps )
1814, 17syl6bb 276 . . . . . 6  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ps ) )
1913, 18anbi12d 747 . . . . 5  |-  ( z  =  y  ->  (
( z  e.  A  /\  [ z  /  x ] ph )  <->  ( y  e.  A  /\  ps )
) )
2011, 12, 19cbveu 2505 . . . 4  |-  ( E! z ( z  e.  A  /\  [ z  /  x ] ph ) 
<->  E! y ( y  e.  A  /\  ps ) )
217, 20bitri 264 . . 3  |-  ( E! z ( [ z  /  x ] x  e.  A  /\  [ z  /  x ] ph ) 
<->  E! y ( y  e.  A  /\  ps ) )
222, 4, 213bitri 286 . 2  |-  ( E! x ( x  e.  A  /\  ph )  <->  E! y ( y  e.  A  /\  ps )
)
23 df-reu 2919 . 2  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
24 df-reu 2919 . 2  |-  ( E! y  e.  A  ps  <->  E! y ( y  e.  A  /\  ps )
)
2522, 23, 243bitr4i 292 1  |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   F/wnf 1708   [wsb 1880    e. wcel 1990   E!weu 2470   E!wreu 2914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-cleq 2615  df-clel 2618  df-reu 2919
This theorem is referenced by:  cbvrmo  3170  cbvreuv  3173  reu8nf  3516  poimirlem25  33434
  Copyright terms: Public domain W3C validator