| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvreu | Structured version Visualization version Unicode version | ||
| Description: Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| cbvral.1 |
|
| cbvral.2 |
|
| cbvral.3 |
|
| Ref | Expression |
|---|---|
| cbvreu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . 4
| |
| 2 | 1 | sb8eu 2503 |
. . 3
|
| 3 | sban 2399 |
. . . 4
| |
| 4 | 3 | eubii 2492 |
. . 3
|
| 5 | clelsb3 2729 |
. . . . . 6
| |
| 6 | 5 | anbi1i 731 |
. . . . 5
|
| 7 | 6 | eubii 2492 |
. . . 4
|
| 8 | nfv 1843 |
. . . . . 6
| |
| 9 | cbvral.1 |
. . . . . . 7
| |
| 10 | 9 | nfsb 2440 |
. . . . . 6
|
| 11 | 8, 10 | nfan 1828 |
. . . . 5
|
| 12 | nfv 1843 |
. . . . 5
| |
| 13 | eleq1 2689 |
. . . . . 6
| |
| 14 | sbequ 2376 |
. . . . . . 7
| |
| 15 | cbvral.2 |
. . . . . . . 8
| |
| 16 | cbvral.3 |
. . . . . . . 8
| |
| 17 | 15, 16 | sbie 2408 |
. . . . . . 7
|
| 18 | 14, 17 | syl6bb 276 |
. . . . . 6
|
| 19 | 13, 18 | anbi12d 747 |
. . . . 5
|
| 20 | 11, 12, 19 | cbveu 2505 |
. . . 4
|
| 21 | 7, 20 | bitri 264 |
. . 3
|
| 22 | 2, 4, 21 | 3bitri 286 |
. 2
|
| 23 | df-reu 2919 |
. 2
| |
| 24 | df-reu 2919 |
. 2
| |
| 25 | 22, 23, 24 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-cleq 2615 df-clel 2618 df-reu 2919 |
| This theorem is referenced by: cbvrmo 3170 cbvreuv 3173 reu8nf 3516 poimirlem25 33434 |
| Copyright terms: Public domain | W3C validator |