| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu8nf | Structured version Visualization version Unicode version | ||
| Description: Restricted uniqueness
using implicit substitution. This version of
reu8 3402 uses a non-freeness hypothesis for |
| Ref | Expression |
|---|---|
| reu8nf.1 |
|
| reu8nf.2 |
|
| reu8nf.3 |
|
| reu8nf.4 |
|
| Ref | Expression |
|---|---|
| reu8nf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . 3
| |
| 2 | reu8nf.2 |
. . 3
| |
| 3 | reu8nf.3 |
. . 3
| |
| 4 | 1, 2, 3 | cbvreu 3169 |
. 2
|
| 5 | reu8nf.4 |
. . 3
| |
| 6 | 5 | reu8 3402 |
. 2
|
| 7 | nfcv 2764 |
. . . . 5
| |
| 8 | reu8nf.1 |
. . . . . 6
| |
| 9 | nfv 1843 |
. . . . . 6
| |
| 10 | 8, 9 | nfim 1825 |
. . . . 5
|
| 11 | 7, 10 | nfral 2945 |
. . . 4
|
| 12 | 2, 11 | nfan 1828 |
. . 3
|
| 13 | nfv 1843 |
. . 3
| |
| 14 | 3 | bicomd 213 |
. . . . 5
|
| 15 | 14 | equcoms 1947 |
. . . 4
|
| 16 | equequ1 1952 |
. . . . . 6
| |
| 17 | 16 | imbi2d 330 |
. . . . 5
|
| 18 | 17 | ralbidv 2986 |
. . . 4
|
| 19 | 15, 18 | anbi12d 747 |
. . 3
|
| 20 | 12, 13, 19 | cbvrex 3168 |
. 2
|
| 21 | 4, 6, 20 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 |
| This theorem is referenced by: reuccats1 13480 |
| Copyright terms: Public domain | W3C validator |