| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb8eu | Structured version Visualization version Unicode version | ||
| Description: Variable substitution in uniqueness quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Aug-2019.) |
| Ref | Expression |
|---|---|
| sb8eu.1 |
|
| Ref | Expression |
|---|---|
| sb8eu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . . 5
| |
| 2 | 1 | sb8 2424 |
. . . 4
|
| 3 | equsb3 2432 |
. . . . . 6
| |
| 4 | 3 | sblbis 2404 |
. . . . 5
|
| 5 | 4 | albii 1747 |
. . . 4
|
| 6 | sb8eu.1 |
. . . . . . 7
| |
| 7 | 6 | nfsb 2440 |
. . . . . 6
|
| 8 | nfv 1843 |
. . . . . 6
| |
| 9 | 7, 8 | nfbi 1833 |
. . . . 5
|
| 10 | nfv 1843 |
. . . . 5
| |
| 11 | sbequ 2376 |
. . . . . 6
| |
| 12 | equequ1 1952 |
. . . . . 6
| |
| 13 | 11, 12 | bibi12d 335 |
. . . . 5
|
| 14 | 9, 10, 13 | cbval 2271 |
. . . 4
|
| 15 | 2, 5, 14 | 3bitri 286 |
. . 3
|
| 16 | 15 | exbii 1774 |
. 2
|
| 17 | df-eu 2474 |
. 2
| |
| 18 | df-eu 2474 |
. 2
| |
| 19 | 16, 17, 18 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 |
| This theorem is referenced by: sb8mo 2504 cbveu 2505 eu1 2510 cbvreu 3169 |
| Copyright terms: Public domain | W3C validator |