MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsex4v Structured version   Visualization version   Unicode version

Theorem ceqsex4v 3247
Description: Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.)
Hypotheses
Ref Expression
ceqsex4v.1  |-  A  e. 
_V
ceqsex4v.2  |-  B  e. 
_V
ceqsex4v.3  |-  C  e. 
_V
ceqsex4v.4  |-  D  e. 
_V
ceqsex4v.7  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ceqsex4v.8  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
ceqsex4v.9  |-  ( z  =  C  ->  ( ch 
<->  th ) )
ceqsex4v.10  |-  ( w  =  D  ->  ( th 
<->  ta ) )
Assertion
Ref Expression
ceqsex4v  |-  ( E. x E. y E. z E. w ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D )  /\  ph ) 
<->  ta )
Distinct variable groups:    x, y,
z, w, A    x, B, y, z, w    x, C, y, z, w    x, D, y, z, w    ps, x    ch, y    th, z    ta, w
Allowed substitution hints:    ph( x, y, z, w)    ps( y,
z, w)    ch( x, z, w)    th( x, y, w)    ta( x, y, z)

Proof of Theorem ceqsex4v
StepHypRef Expression
1 19.42vv 1920 . . . 4  |-  ( E. z E. w ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D  /\  ph )
)  <->  ( ( x  =  A  /\  y  =  B )  /\  E. z E. w ( z  =  C  /\  w  =  D  /\  ph )
) )
2 3anass 1042 . . . . . 6  |-  ( ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D )  /\  ph ) 
<->  ( ( x  =  A  /\  y  =  B )  /\  (
( z  =  C  /\  w  =  D )  /\  ph )
) )
3 df-3an 1039 . . . . . . 7  |-  ( ( z  =  C  /\  w  =  D  /\  ph )  <->  ( ( z  =  C  /\  w  =  D )  /\  ph ) )
43anbi2i 730 . . . . . 6  |-  ( ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D  /\  ph )
)  <->  ( ( x  =  A  /\  y  =  B )  /\  (
( z  =  C  /\  w  =  D )  /\  ph )
) )
52, 4bitr4i 267 . . . . 5  |-  ( ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D )  /\  ph ) 
<->  ( ( x  =  A  /\  y  =  B )  /\  (
z  =  C  /\  w  =  D  /\  ph ) ) )
652exbii 1775 . . . 4  |-  ( E. z E. w ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D )  /\  ph ) 
<->  E. z E. w
( ( x  =  A  /\  y  =  B )  /\  (
z  =  C  /\  w  =  D  /\  ph ) ) )
7 df-3an 1039 . . . 4  |-  ( ( x  =  A  /\  y  =  B  /\  E. z E. w ( z  =  C  /\  w  =  D  /\  ph ) )  <->  ( (
x  =  A  /\  y  =  B )  /\  E. z E. w
( z  =  C  /\  w  =  D  /\  ph ) ) )
81, 6, 73bitr4i 292 . . 3  |-  ( E. z E. w ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D )  /\  ph ) 
<->  ( x  =  A  /\  y  =  B  /\  E. z E. w ( z  =  C  /\  w  =  D  /\  ph )
) )
982exbii 1775 . 2  |-  ( E. x E. y E. z E. w ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D )  /\  ph ) 
<->  E. x E. y
( x  =  A  /\  y  =  B  /\  E. z E. w ( z  =  C  /\  w  =  D  /\  ph )
) )
10 ceqsex4v.1 . . 3  |-  A  e. 
_V
11 ceqsex4v.2 . . 3  |-  B  e. 
_V
12 ceqsex4v.7 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
13123anbi3d 1405 . . . 4  |-  ( x  =  A  ->  (
( z  =  C  /\  w  =  D  /\  ph )  <->  ( z  =  C  /\  w  =  D  /\  ps )
) )
14132exbidv 1852 . . 3  |-  ( x  =  A  ->  ( E. z E. w ( z  =  C  /\  w  =  D  /\  ph )  <->  E. z E. w
( z  =  C  /\  w  =  D  /\  ps ) ) )
15 ceqsex4v.8 . . . . 5  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
16153anbi3d 1405 . . . 4  |-  ( y  =  B  ->  (
( z  =  C  /\  w  =  D  /\  ps )  <->  ( z  =  C  /\  w  =  D  /\  ch )
) )
17162exbidv 1852 . . 3  |-  ( y  =  B  ->  ( E. z E. w ( z  =  C  /\  w  =  D  /\  ps )  <->  E. z E. w
( z  =  C  /\  w  =  D  /\  ch ) ) )
1810, 11, 14, 17ceqsex2v 3245 . 2  |-  ( E. x E. y ( x  =  A  /\  y  =  B  /\  E. z E. w ( z  =  C  /\  w  =  D  /\  ph ) )  <->  E. z E. w ( z  =  C  /\  w  =  D  /\  ch )
)
19 ceqsex4v.3 . . 3  |-  C  e. 
_V
20 ceqsex4v.4 . . 3  |-  D  e. 
_V
21 ceqsex4v.9 . . 3  |-  ( z  =  C  ->  ( ch 
<->  th ) )
22 ceqsex4v.10 . . 3  |-  ( w  =  D  ->  ( th 
<->  ta ) )
2319, 20, 21, 22ceqsex2v 3245 . 2  |-  ( E. z E. w ( z  =  C  /\  w  =  D  /\  ch )  <->  ta )
249, 18, 233bitri 286 1  |-  ( E. x E. y E. z E. w ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D )  /\  ph ) 
<->  ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202
This theorem is referenced by:  ceqsex8v  3249  dihopelvalcpre  36537
  Copyright terms: Public domain W3C validator