| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsex4v | Structured version Visualization version Unicode version | ||
| Description: Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.) |
| Ref | Expression |
|---|---|
| ceqsex4v.1 |
|
| ceqsex4v.2 |
|
| ceqsex4v.3 |
|
| ceqsex4v.4 |
|
| ceqsex4v.7 |
|
| ceqsex4v.8 |
|
| ceqsex4v.9 |
|
| ceqsex4v.10 |
|
| Ref | Expression |
|---|---|
| ceqsex4v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42vv 1920 |
. . . 4
| |
| 2 | 3anass 1042 |
. . . . . 6
| |
| 3 | df-3an 1039 |
. . . . . . 7
| |
| 4 | 3 | anbi2i 730 |
. . . . . 6
|
| 5 | 2, 4 | bitr4i 267 |
. . . . 5
|
| 6 | 5 | 2exbii 1775 |
. . . 4
|
| 7 | df-3an 1039 |
. . . 4
| |
| 8 | 1, 6, 7 | 3bitr4i 292 |
. . 3
|
| 9 | 8 | 2exbii 1775 |
. 2
|
| 10 | ceqsex4v.1 |
. . 3
| |
| 11 | ceqsex4v.2 |
. . 3
| |
| 12 | ceqsex4v.7 |
. . . . 5
| |
| 13 | 12 | 3anbi3d 1405 |
. . . 4
|
| 14 | 13 | 2exbidv 1852 |
. . 3
|
| 15 | ceqsex4v.8 |
. . . . 5
| |
| 16 | 15 | 3anbi3d 1405 |
. . . 4
|
| 17 | 16 | 2exbidv 1852 |
. . 3
|
| 18 | 10, 11, 14, 17 | ceqsex2v 3245 |
. 2
|
| 19 | ceqsex4v.3 |
. . 3
| |
| 20 | ceqsex4v.4 |
. . 3
| |
| 21 | ceqsex4v.9 |
. . 3
| |
| 22 | ceqsex4v.10 |
. . 3
| |
| 23 | 19, 20, 21, 22 | ceqsex2v 3245 |
. 2
|
| 24 | 9, 18, 23 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: ceqsex8v 3249 dihopelvalcpre 36537 |
| Copyright terms: Public domain | W3C validator |