MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsex6v Structured version   Visualization version   Unicode version

Theorem ceqsex6v 3248
Description: Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011.)
Hypotheses
Ref Expression
ceqsex6v.1  |-  A  e. 
_V
ceqsex6v.2  |-  B  e. 
_V
ceqsex6v.3  |-  C  e. 
_V
ceqsex6v.4  |-  D  e. 
_V
ceqsex6v.5  |-  E  e. 
_V
ceqsex6v.6  |-  F  e. 
_V
ceqsex6v.7  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ceqsex6v.8  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
ceqsex6v.9  |-  ( z  =  C  ->  ( ch 
<->  th ) )
ceqsex6v.10  |-  ( w  =  D  ->  ( th 
<->  ta ) )
ceqsex6v.11  |-  ( v  =  E  ->  ( ta 
<->  et ) )
ceqsex6v.12  |-  ( u  =  F  ->  ( et 
<->  ze ) )
Assertion
Ref Expression
ceqsex6v  |-  ( E. x E. y E. z E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )  <->  ze )
Distinct variable groups:    x, y,
z, w, v, u, A    x, B, y, z, w, v, u   
x, C, y, z, w, v, u    x, D, y, z, w, v, u    x, E, y, z, w, v, u   
x, F, y, z, w, v, u    ps, x    ch, y    th, z    ta, w    et, v    ze, u
Allowed substitution hints:    ph( x, y, z, w, v, u)    ps( y, z, w, v, u)    ch( x, z, w, v, u)    th( x, y, w, v, u)    ta( x, y, z, v, u)    et( x, y, z, w, u)    ze( x, y, z, w, v)

Proof of Theorem ceqsex6v
StepHypRef Expression
1 3anass 1042 . . . . 5  |-  ( ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) 
<->  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  (
( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )
) )
213exbii 1776 . . . 4  |-  ( E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  (
w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )  <->  E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) ) )
3 19.42vvv 1921 . . . 4  |-  ( E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  (
( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )
)  <->  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  E. w E. v E. u
( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) ) )
42, 3bitri 264 . . 3  |-  ( E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  (
w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )  <->  ( (
x  =  A  /\  y  =  B  /\  z  =  C )  /\  E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) ) )
543exbii 1776 . 2  |-  ( E. x E. y E. z E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )  <->  E. x E. y E. z ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  E. w E. v E. u
( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) ) )
6 ceqsex6v.1 . . . 4  |-  A  e. 
_V
7 ceqsex6v.2 . . . 4  |-  B  e. 
_V
8 ceqsex6v.3 . . . 4  |-  C  e. 
_V
9 ceqsex6v.7 . . . . . 6  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
109anbi2d 740 . . . . 5  |-  ( x  =  A  ->  (
( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) 
<->  ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ps ) ) )
11103exbidv 1853 . . . 4  |-  ( x  =  A  ->  ( E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) 
<->  E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ps ) ) )
12 ceqsex6v.8 . . . . . 6  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
1312anbi2d 740 . . . . 5  |-  ( y  =  B  ->  (
( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ps ) 
<->  ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ch ) ) )
14133exbidv 1853 . . . 4  |-  ( y  =  B  ->  ( E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ps ) 
<->  E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ch ) ) )
15 ceqsex6v.9 . . . . . 6  |-  ( z  =  C  ->  ( ch 
<->  th ) )
1615anbi2d 740 . . . . 5  |-  ( z  =  C  ->  (
( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ch ) 
<->  ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  th ) ) )
17163exbidv 1853 . . . 4  |-  ( z  =  C  ->  ( E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ch ) 
<->  E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  th ) ) )
186, 7, 8, 11, 14, 17ceqsex3v 3246 . . 3  |-  ( E. x E. y E. z ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  E. w E. v E. u
( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) )  <->  E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  th )
)
19 ceqsex6v.4 . . . 4  |-  D  e. 
_V
20 ceqsex6v.5 . . . 4  |-  E  e. 
_V
21 ceqsex6v.6 . . . 4  |-  F  e. 
_V
22 ceqsex6v.10 . . . 4  |-  ( w  =  D  ->  ( th 
<->  ta ) )
23 ceqsex6v.11 . . . 4  |-  ( v  =  E  ->  ( ta 
<->  et ) )
24 ceqsex6v.12 . . . 4  |-  ( u  =  F  ->  ( et 
<->  ze ) )
2519, 20, 21, 22, 23, 24ceqsex3v 3246 . . 3  |-  ( E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  th ) 
<->  ze )
2618, 25bitri 264 . 2  |-  ( E. x E. y E. z ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  E. w E. v E. u
( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) )  <->  ze )
275, 26bitri 264 1  |-  ( E. x E. y E. z E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )  <->  ze )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator