| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsex8v | Structured version Visualization version Unicode version | ||
| Description: Elimination of eight existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.) |
| Ref | Expression |
|---|---|
| ceqsex8v.1 |
|
| ceqsex8v.2 |
|
| ceqsex8v.3 |
|
| ceqsex8v.4 |
|
| ceqsex8v.5 |
|
| ceqsex8v.6 |
|
| ceqsex8v.7 |
|
| ceqsex8v.8 |
|
| ceqsex8v.9 |
|
| ceqsex8v.10 |
|
| ceqsex8v.11 |
|
| ceqsex8v.12 |
|
| ceqsex8v.13 |
|
| ceqsex8v.14 |
|
| ceqsex8v.15 |
|
| ceqsex8v.16 |
|
| Ref | Expression |
|---|---|
| ceqsex8v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42vv 1920 |
. . . . . . 7
| |
| 2 | 1 | 2exbii 1775 |
. . . . . 6
|
| 3 | 19.42vv 1920 |
. . . . . 6
| |
| 4 | 2, 3 | bitri 264 |
. . . . 5
|
| 5 | 3anass 1042 |
. . . . . . . 8
| |
| 6 | df-3an 1039 |
. . . . . . . . 9
| |
| 7 | 6 | anbi2i 730 |
. . . . . . . 8
|
| 8 | 5, 7 | bitr4i 267 |
. . . . . . 7
|
| 9 | 8 | 2exbii 1775 |
. . . . . 6
|
| 10 | 9 | 2exbii 1775 |
. . . . 5
|
| 11 | df-3an 1039 |
. . . . 5
| |
| 12 | 4, 10, 11 | 3bitr4i 292 |
. . . 4
|
| 13 | 12 | 2exbii 1775 |
. . 3
|
| 14 | 13 | 2exbii 1775 |
. 2
|
| 15 | ceqsex8v.1 |
. . . 4
| |
| 16 | ceqsex8v.2 |
. . . 4
| |
| 17 | ceqsex8v.3 |
. . . 4
| |
| 18 | ceqsex8v.4 |
. . . 4
| |
| 19 | ceqsex8v.9 |
. . . . . 6
| |
| 20 | 19 | 3anbi3d 1405 |
. . . . 5
|
| 21 | 20 | 4exbidv 1854 |
. . . 4
|
| 22 | ceqsex8v.10 |
. . . . . 6
| |
| 23 | 22 | 3anbi3d 1405 |
. . . . 5
|
| 24 | 23 | 4exbidv 1854 |
. . . 4
|
| 25 | ceqsex8v.11 |
. . . . . 6
| |
| 26 | 25 | 3anbi3d 1405 |
. . . . 5
|
| 27 | 26 | 4exbidv 1854 |
. . . 4
|
| 28 | ceqsex8v.12 |
. . . . . 6
| |
| 29 | 28 | 3anbi3d 1405 |
. . . . 5
|
| 30 | 29 | 4exbidv 1854 |
. . . 4
|
| 31 | 15, 16, 17, 18, 21, 24, 27, 30 | ceqsex4v 3247 |
. . 3
|
| 32 | ceqsex8v.5 |
. . . 4
| |
| 33 | ceqsex8v.6 |
. . . 4
| |
| 34 | ceqsex8v.7 |
. . . 4
| |
| 35 | ceqsex8v.8 |
. . . 4
| |
| 36 | ceqsex8v.13 |
. . . 4
| |
| 37 | ceqsex8v.14 |
. . . 4
| |
| 38 | ceqsex8v.15 |
. . . 4
| |
| 39 | ceqsex8v.16 |
. . . 4
| |
| 40 | 32, 33, 34, 35, 36, 37, 38, 39 | ceqsex4v 3247 |
. . 3
|
| 41 | 31, 40 | bitri 264 |
. 2
|
| 42 | 14, 41 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |