| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsrex2v | Structured version Visualization version Unicode version | ||
| Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005.) |
| Ref | Expression |
|---|---|
| ceqsrex2v.1 |
|
| ceqsrex2v.2 |
|
| Ref | Expression |
|---|---|
| ceqsrex2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 681 |
. . . . . 6
| |
| 2 | 1 | rexbii 3041 |
. . . . 5
|
| 3 | r19.42v 3092 |
. . . . 5
| |
| 4 | 2, 3 | bitri 264 |
. . . 4
|
| 5 | 4 | rexbii 3041 |
. . 3
|
| 6 | ceqsrex2v.1 |
. . . . . 6
| |
| 7 | 6 | anbi2d 740 |
. . . . 5
|
| 8 | 7 | rexbidv 3052 |
. . . 4
|
| 9 | 8 | ceqsrexv 3336 |
. . 3
|
| 10 | 5, 9 | syl5bb 272 |
. 2
|
| 11 | ceqsrex2v.2 |
. . 3
| |
| 12 | 11 | ceqsrexv 3336 |
. 2
|
| 13 | 10, 12 | sylan9bb 736 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-rex 2918 df-v 3202 |
| This theorem is referenced by: opiota 7229 brdom7disj 9353 brdom6disj 9354 lsmspsn 19084 |
| Copyright terms: Public domain | W3C validator |