MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsrex2v Structured version   Visualization version   Unicode version

Theorem ceqsrex2v 3338
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005.)
Hypotheses
Ref Expression
ceqsrex2v.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ceqsrex2v.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ceqsrex2v  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( E. x  e.  C  E. y  e.  D  ( ( x  =  A  /\  y  =  B )  /\  ph ) 
<->  ch ) )
Distinct variable groups:    x, y, A    x, B, y    x, C    x, D, y    ps, x    ch, y
Allowed substitution hints:    ph( x, y)    ps( y)    ch( x)    C( y)

Proof of Theorem ceqsrex2v
StepHypRef Expression
1 anass 681 . . . . . 6  |-  ( ( ( x  =  A  /\  y  =  B )  /\  ph )  <->  ( x  =  A  /\  ( y  =  B  /\  ph ) ) )
21rexbii 3041 . . . . 5  |-  ( E. y  e.  D  ( ( x  =  A  /\  y  =  B )  /\  ph )  <->  E. y  e.  D  ( x  =  A  /\  ( y  =  B  /\  ph ) ) )
3 r19.42v 3092 . . . . 5  |-  ( E. y  e.  D  ( x  =  A  /\  ( y  =  B  /\  ph ) )  <-> 
( x  =  A  /\  E. y  e.  D  ( y  =  B  /\  ph )
) )
42, 3bitri 264 . . . 4  |-  ( E. y  e.  D  ( ( x  =  A  /\  y  =  B )  /\  ph )  <->  ( x  =  A  /\  E. y  e.  D  ( y  =  B  /\  ph ) ) )
54rexbii 3041 . . 3  |-  ( E. x  e.  C  E. y  e.  D  (
( x  =  A  /\  y  =  B )  /\  ph )  <->  E. x  e.  C  ( x  =  A  /\  E. y  e.  D  ( y  =  B  /\  ph ) ) )
6 ceqsrex2v.1 . . . . . 6  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
76anbi2d 740 . . . . 5  |-  ( x  =  A  ->  (
( y  =  B  /\  ph )  <->  ( y  =  B  /\  ps )
) )
87rexbidv 3052 . . . 4  |-  ( x  =  A  ->  ( E. y  e.  D  ( y  =  B  /\  ph )  <->  E. y  e.  D  ( y  =  B  /\  ps )
) )
98ceqsrexv 3336 . . 3  |-  ( A  e.  C  ->  ( E. x  e.  C  ( x  =  A  /\  E. y  e.  D  ( y  =  B  /\  ph ) )  <->  E. y  e.  D  ( y  =  B  /\  ps ) ) )
105, 9syl5bb 272 . 2  |-  ( A  e.  C  ->  ( E. x  e.  C  E. y  e.  D  ( ( x  =  A  /\  y  =  B )  /\  ph ) 
<->  E. y  e.  D  ( y  =  B  /\  ps ) ) )
11 ceqsrex2v.2 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
1211ceqsrexv 3336 . 2  |-  ( B  e.  D  ->  ( E. y  e.  D  ( y  =  B  /\  ps )  <->  ch )
)
1310, 12sylan9bb 736 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( E. x  e.  C  E. y  e.  D  ( ( x  =  A  /\  y  =  B )  /\  ph ) 
<->  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-rex 2918  df-v 3202
This theorem is referenced by:  opiota  7229  brdom7disj  9353  brdom6disj  9354  lsmspsn  19084
  Copyright terms: Public domain W3C validator