| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opiota | Structured version Visualization version Unicode version | ||
| Description: The property of a
uniquely specified ordered pair. The proof uses
properties of the |
| Ref | Expression |
|---|---|
| opiota.1 |
|
| opiota.2 |
|
| opiota.3 |
|
| opiota.4 |
|
| opiota.5 |
|
| Ref | Expression |
|---|---|
| opiota |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opiota.4 |
. . . . . . 7
| |
| 2 | opiota.5 |
. . . . . . 7
| |
| 3 | 1, 2 | ceqsrex2v 3338 |
. . . . . 6
|
| 4 | 3 | bicomd 213 |
. . . . 5
|
| 5 | opex 4932 |
. . . . . . . 8
| |
| 6 | 5 | a1i 11 |
. . . . . . 7
|
| 7 | id 22 |
. . . . . . 7
| |
| 8 | eqeq1 2626 |
. . . . . . . . . . 11
| |
| 9 | eqcom 2629 |
. . . . . . . . . . . 12
| |
| 10 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 11 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | opth 4945 |
. . . . . . . . . . . 12
|
| 13 | 9, 12 | bitri 264 |
. . . . . . . . . . 11
|
| 14 | 8, 13 | syl6bb 276 |
. . . . . . . . . 10
|
| 15 | 14 | anbi1d 741 |
. . . . . . . . 9
|
| 16 | 15 | 2rexbidv 3057 |
. . . . . . . 8
|
| 17 | 16 | adantl 482 |
. . . . . . 7
|
| 18 | nfeu1 2480 |
. . . . . . 7
| |
| 19 | nfvd 1844 |
. . . . . . 7
| |
| 20 | nfcvd 2765 |
. . . . . . 7
| |
| 21 | 6, 7, 17, 18, 19, 20 | iota2df 5875 |
. . . . . 6
|
| 22 | eqcom 2629 |
. . . . . . 7
| |
| 23 | opiota.1 |
. . . . . . . 8
| |
| 24 | 23 | eqeq1i 2627 |
. . . . . . 7
|
| 25 | 22, 24 | bitri 264 |
. . . . . 6
|
| 26 | 21, 25 | syl6bbr 278 |
. . . . 5
|
| 27 | 4, 26 | sylan9bbr 737 |
. . . 4
|
| 28 | 27 | pm5.32da 673 |
. . 3
|
| 29 | opelxpi 5148 |
. . . . . . . . . 10
| |
| 30 | simpl 473 |
. . . . . . . . . . 11
| |
| 31 | 30 | eleq1d 2686 |
. . . . . . . . . 10
|
| 32 | 29, 31 | syl5ibrcom 237 |
. . . . . . . . 9
|
| 33 | 32 | rexlimivv 3036 |
. . . . . . . 8
|
| 34 | 33 | abssi 3677 |
. . . . . . 7
|
| 35 | iotacl 5874 |
. . . . . . 7
| |
| 36 | 34, 35 | sseldi 3601 |
. . . . . 6
|
| 37 | 23, 36 | syl5eqel 2705 |
. . . . 5
|
| 38 | opelxp 5146 |
. . . . . 6
| |
| 39 | eleq1 2689 |
. . . . . 6
| |
| 40 | 38, 39 | syl5bbr 274 |
. . . . 5
|
| 41 | 37, 40 | syl5ibrcom 237 |
. . . 4
|
| 42 | 41 | pm4.71rd 667 |
. . 3
|
| 43 | 1st2nd2 7205 |
. . . . 5
| |
| 44 | 37, 43 | syl 17 |
. . . 4
|
| 45 | 44 | eqeq2d 2632 |
. . 3
|
| 46 | 28, 42, 45 | 3bitr2d 296 |
. 2
|
| 47 | df-3an 1039 |
. 2
| |
| 48 | opiota.2 |
. . . . 5
| |
| 49 | 48 | eqeq2i 2634 |
. . . 4
|
| 50 | opiota.3 |
. . . . 5
| |
| 51 | 50 | eqeq2i 2634 |
. . . 4
|
| 52 | 49, 51 | anbi12i 733 |
. . 3
|
| 53 | fvex 6201 |
. . . 4
| |
| 54 | fvex 6201 |
. . . 4
| |
| 55 | 53, 54 | opth2 4949 |
. . 3
|
| 56 | 52, 55 | bitr4i 267 |
. 2
|
| 57 | 46, 47, 56 | 3bitr4g 303 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: oeeui 7682 |
| Copyright terms: Public domain | W3C validator |