| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suppss2f | Structured version Visualization version Unicode version | ||
| Description: Show that the support of a function is contained in a set. (Contributed by Thierry Arnoux, 22-Jun-2017.) (Revised by AV, 1-Sep-2020.) |
| Ref | Expression |
|---|---|
| suppss2f.p |
|
| suppss2f.a |
|
| suppss2f.w |
|
| suppss2f.n |
|
| suppss2f.v |
|
| Ref | Expression |
|---|---|
| suppss2f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppss2f.a |
. . . 4
| |
| 2 | nfcv 2764 |
. . . 4
| |
| 3 | nfcv 2764 |
. . . 4
| |
| 4 | nfcsb1v 3549 |
. . . 4
| |
| 5 | csbeq1a 3542 |
. . . 4
| |
| 6 | 1, 2, 3, 4, 5 | cbvmptf 4748 |
. . 3
|
| 7 | 6 | oveq1i 6660 |
. 2
|
| 8 | suppss2f.n |
. . . . 5
| |
| 9 | 8 | sbt 2419 |
. . . 4
|
| 10 | sbim 2395 |
. . . . 5
| |
| 11 | sban 2399 |
. . . . . . 7
| |
| 12 | suppss2f.p |
. . . . . . . . 9
| |
| 13 | 12 | sbf 2380 |
. . . . . . . 8
|
| 14 | suppss2f.w |
. . . . . . . . . 10
| |
| 15 | 1, 14 | nfdif 3731 |
. . . . . . . . 9
|
| 16 | 15 | clelsb3f 2768 |
. . . . . . . 8
|
| 17 | 13, 16 | anbi12i 733 |
. . . . . . 7
|
| 18 | 11, 17 | bitri 264 |
. . . . . 6
|
| 19 | sbsbc 3439 |
. . . . . . 7
| |
| 20 | vex 3203 |
. . . . . . . 8
| |
| 21 | sbceq1g 3988 |
. . . . . . . 8
| |
| 22 | 20, 21 | ax-mp 5 |
. . . . . . 7
|
| 23 | 19, 22 | bitri 264 |
. . . . . 6
|
| 24 | 18, 23 | imbi12i 340 |
. . . . 5
|
| 25 | 10, 24 | bitri 264 |
. . . 4
|
| 26 | 9, 25 | mpbi 220 |
. . 3
|
| 27 | suppss2f.v |
. . 3
| |
| 28 | 26, 27 | suppss2 7329 |
. 2
|
| 29 | 7, 28 | syl5eqss 3649 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-supp 7296 |
| This theorem is referenced by: esumss 30134 |
| Copyright terms: Public domain | W3C validator |