Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppss2f Structured version   Visualization version   Unicode version

Theorem suppss2f 29439
Description: Show that the support of a function is contained in a set. (Contributed by Thierry Arnoux, 22-Jun-2017.) (Revised by AV, 1-Sep-2020.)
Hypotheses
Ref Expression
suppss2f.p  |-  F/ k
ph
suppss2f.a  |-  F/_ k A
suppss2f.w  |-  F/_ k W
suppss2f.n  |-  ( (
ph  /\  k  e.  ( A  \  W ) )  ->  B  =  Z )
suppss2f.v  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
suppss2f  |-  ( ph  ->  ( ( k  e.  A  |->  B ) supp  Z
)  C_  W )
Distinct variable group:    k, Z
Allowed substitution hints:    ph( k)    A( k)    B( k)    V( k)    W( k)

Proof of Theorem suppss2f
Dummy variable  l is distinct from all other variables.
StepHypRef Expression
1 suppss2f.a . . . 4  |-  F/_ k A
2 nfcv 2764 . . . 4  |-  F/_ l A
3 nfcv 2764 . . . 4  |-  F/_ l B
4 nfcsb1v 3549 . . . 4  |-  F/_ k [_ l  /  k ]_ B
5 csbeq1a 3542 . . . 4  |-  ( k  =  l  ->  B  =  [_ l  /  k ]_ B )
61, 2, 3, 4, 5cbvmptf 4748 . . 3  |-  ( k  e.  A  |->  B )  =  ( l  e.  A  |->  [_ l  /  k ]_ B )
76oveq1i 6660 . 2  |-  ( ( k  e.  A  |->  B ) supp  Z )  =  ( ( l  e.  A  |->  [_ l  /  k ]_ B ) supp  Z )
8 suppss2f.n . . . . 5  |-  ( (
ph  /\  k  e.  ( A  \  W ) )  ->  B  =  Z )
98sbt 2419 . . . 4  |-  [ l  /  k ] ( ( ph  /\  k  e.  ( A  \  W
) )  ->  B  =  Z )
10 sbim 2395 . . . . 5  |-  ( [ l  /  k ] ( ( ph  /\  k  e.  ( A  \  W ) )  ->  B  =  Z )  <->  ( [ l  /  k ] ( ph  /\  k  e.  ( A  \  W ) )  ->  [ l  /  k ] B  =  Z
) )
11 sban 2399 . . . . . . 7  |-  ( [ l  /  k ] ( ph  /\  k  e.  ( A  \  W
) )  <->  ( [
l  /  k ]
ph  /\  [ l  /  k ] k  e.  ( A  \  W ) ) )
12 suppss2f.p . . . . . . . . 9  |-  F/ k
ph
1312sbf 2380 . . . . . . . 8  |-  ( [ l  /  k ]
ph 
<-> 
ph )
14 suppss2f.w . . . . . . . . . 10  |-  F/_ k W
151, 14nfdif 3731 . . . . . . . . 9  |-  F/_ k
( A  \  W
)
1615clelsb3f 2768 . . . . . . . 8  |-  ( [ l  /  k ] k  e.  ( A 
\  W )  <->  l  e.  ( A  \  W ) )
1713, 16anbi12i 733 . . . . . . 7  |-  ( ( [ l  /  k ] ph  /\  [ l  /  k ] k  e.  ( A  \  W ) )  <->  ( ph  /\  l  e.  ( A 
\  W ) ) )
1811, 17bitri 264 . . . . . 6  |-  ( [ l  /  k ] ( ph  /\  k  e.  ( A  \  W
) )  <->  ( ph  /\  l  e.  ( A 
\  W ) ) )
19 sbsbc 3439 . . . . . . 7  |-  ( [ l  /  k ] B  =  Z  <->  [. l  / 
k ]. B  =  Z )
20 vex 3203 . . . . . . . 8  |-  l  e. 
_V
21 sbceq1g 3988 . . . . . . . 8  |-  ( l  e.  _V  ->  ( [. l  /  k ]. B  =  Z  <->  [_ l  /  k ]_ B  =  Z )
)
2220, 21ax-mp 5 . . . . . . 7  |-  ( [. l  /  k ]. B  =  Z  <->  [_ l  /  k ]_ B  =  Z
)
2319, 22bitri 264 . . . . . 6  |-  ( [ l  /  k ] B  =  Z  <->  [_ l  / 
k ]_ B  =  Z )
2418, 23imbi12i 340 . . . . 5  |-  ( ( [ l  /  k ] ( ph  /\  k  e.  ( A  \  W ) )  ->  [ l  /  k ] B  =  Z
)  <->  ( ( ph  /\  l  e.  ( A 
\  W ) )  ->  [_ l  /  k ]_ B  =  Z
) )
2510, 24bitri 264 . . . 4  |-  ( [ l  /  k ] ( ( ph  /\  k  e.  ( A  \  W ) )  ->  B  =  Z )  <->  ( ( ph  /\  l  e.  ( A  \  W
) )  ->  [_ l  /  k ]_ B  =  Z ) )
269, 25mpbi 220 . . 3  |-  ( (
ph  /\  l  e.  ( A  \  W ) )  ->  [_ l  / 
k ]_ B  =  Z )
27 suppss2f.v . . 3  |-  ( ph  ->  A  e.  V )
2826, 27suppss2 7329 . 2  |-  ( ph  ->  ( ( l  e.  A  |->  [_ l  /  k ]_ B ) supp  Z ) 
C_  W )
297, 28syl5eqss 3649 1  |-  ( ph  ->  ( ( k  e.  A  |->  B ) supp  Z
)  C_  W )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708   [wsb 1880    e. wcel 1990   F/_wnfc 2751   _Vcvv 3200   [.wsbc 3435   [_csb 3533    \ cdif 3571    C_ wss 3574    |-> cmpt 4729  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  esumss  30134
  Copyright terms: Public domain W3C validator