| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmo3f | Structured version Visualization version Unicode version | ||
| Description: Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) |
| Ref | Expression |
|---|---|
| rmo3f.1 |
|
| rmo3f.2 |
|
| rmo3f.3 |
|
| Ref | Expression |
|---|---|
| rmo3f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 2920 |
. 2
| |
| 2 | sban 2399 |
. . . . . . . . . . 11
| |
| 3 | rmo3f.1 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | clelsb3f 2768 |
. . . . . . . . . . . 12
|
| 5 | 4 | anbi1i 731 |
. . . . . . . . . . 11
|
| 6 | 2, 5 | bitri 264 |
. . . . . . . . . 10
|
| 7 | 6 | anbi2i 730 |
. . . . . . . . 9
|
| 8 | an4 865 |
. . . . . . . . 9
| |
| 9 | ancom 466 |
. . . . . . . . . 10
| |
| 10 | 9 | anbi1i 731 |
. . . . . . . . 9
|
| 11 | 7, 8, 10 | 3bitri 286 |
. . . . . . . 8
|
| 12 | 11 | imbi1i 339 |
. . . . . . 7
|
| 13 | impexp 462 |
. . . . . . 7
| |
| 14 | impexp 462 |
. . . . . . 7
| |
| 15 | 12, 13, 14 | 3bitri 286 |
. . . . . 6
|
| 16 | 15 | albii 1747 |
. . . . 5
|
| 17 | df-ral 2917 |
. . . . 5
| |
| 18 | rmo3f.2 |
. . . . . . 7
| |
| 19 | 18 | nfcri 2758 |
. . . . . 6
|
| 20 | 19 | r19.21 2956 |
. . . . 5
|
| 21 | 16, 17, 20 | 3bitr2i 288 |
. . . 4
|
| 22 | 21 | albii 1747 |
. . 3
|
| 23 | rmo3f.3 |
. . . . 5
| |
| 24 | 19, 23 | nfan 1828 |
. . . 4
|
| 25 | 24 | mo3 2507 |
. . 3
|
| 26 | df-ral 2917 |
. . 3
| |
| 27 | 22, 25, 26 | 3bitr4i 292 |
. 2
|
| 28 | 1, 27 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rmo 2920 |
| This theorem is referenced by: rmo4f 29337 |
| Copyright terms: Public domain | W3C validator |