Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptdF Structured version   Visualization version   Unicode version

Theorem fmptdF 29456
Description: Domain and co-domain of the mapping operation; deduction form. This version of fmptd 6385 uses bound-variable hypothesis instead of distinct variable conditions. (Contributed by Thierry Arnoux, 28-Mar-2017.)
Hypotheses
Ref Expression
fmptdF.p  |-  F/ x ph
fmptdF.a  |-  F/_ x A
fmptdF.c  |-  F/_ x C
fmptdF.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
fmptdF.2  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fmptdF  |-  ( ph  ->  F : A --> C )

Proof of Theorem fmptdF
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fmptdF.1 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
21sbimi 1886 . . . . 5  |-  ( [ y  /  x ]
( ph  /\  x  e.  A )  ->  [ y  /  x ] B  e.  C )
3 sban 2399 . . . . . 6  |-  ( [ y  /  x ]
( ph  /\  x  e.  A )  <->  ( [
y  /  x ] ph  /\  [ y  /  x ] x  e.  A
) )
4 fmptdF.p . . . . . . . 8  |-  F/ x ph
54sbf 2380 . . . . . . 7  |-  ( [ y  /  x ] ph 
<-> 
ph )
6 fmptdF.a . . . . . . . 8  |-  F/_ x A
76clelsb3f 2768 . . . . . . 7  |-  ( [ y  /  x ]
x  e.  A  <->  y  e.  A )
85, 7anbi12i 733 . . . . . 6  |-  ( ( [ y  /  x ] ph  /\  [ y  /  x ] x  e.  A )  <->  ( ph  /\  y  e.  A ) )
93, 8bitri 264 . . . . 5  |-  ( [ y  /  x ]
( ph  /\  x  e.  A )  <->  ( ph  /\  y  e.  A ) )
10 sbsbc 3439 . . . . . 6  |-  ( [ y  /  x ] B  e.  C  <->  [. y  /  x ]. B  e.  C
)
11 sbcel12 3983 . . . . . . 7  |-  ( [. y  /  x ]. B  e.  C  <->  [_ y  /  x ]_ B  e.  [_ y  /  x ]_ C )
12 vex 3203 . . . . . . . . 9  |-  y  e. 
_V
13 fmptdF.c . . . . . . . . . 10  |-  F/_ x C
1413csbconstgf 3545 . . . . . . . . 9  |-  ( y  e.  _V  ->  [_ y  /  x ]_ C  =  C )
1512, 14ax-mp 5 . . . . . . . 8  |-  [_ y  /  x ]_ C  =  C
1615eleq2i 2693 . . . . . . 7  |-  ( [_ y  /  x ]_ B  e.  [_ y  /  x ]_ C  <->  [_ y  /  x ]_ B  e.  C
)
1711, 16bitri 264 . . . . . 6  |-  ( [. y  /  x ]. B  e.  C  <->  [_ y  /  x ]_ B  e.  C
)
1810, 17bitri 264 . . . . 5  |-  ( [ y  /  x ] B  e.  C  <->  [_ y  /  x ]_ B  e.  C
)
192, 9, 183imtr3i 280 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  [_ y  /  x ]_ B  e.  C )
2019ralrimiva 2966 . . 3  |-  ( ph  ->  A. y  e.  A  [_ y  /  x ]_ B  e.  C )
21 nfcv 2764 . . . . 5  |-  F/_ y A
22 nfcv 2764 . . . . 5  |-  F/_ y B
23 nfcsb1v 3549 . . . . 5  |-  F/_ x [_ y  /  x ]_ B
24 csbeq1a 3542 . . . . 5  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
256, 21, 22, 23, 24cbvmptf 4748 . . . 4  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
2625fmpt 6381 . . 3  |-  ( A. y  e.  A  [_ y  /  x ]_ B  e.  C  <->  ( x  e.  A  |->  B ) : A --> C )
2720, 26sylib 208 . 2  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> C )
28 fmptdF.2 . . 3  |-  F  =  ( x  e.  A  |->  B )
2928feq1i 6036 . 2  |-  ( F : A --> C  <->  ( x  e.  A  |->  B ) : A --> C )
3027, 29sylibr 224 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708   [wsb 1880    e. wcel 1990   F/_wnfc 2751   A.wral 2912   _Vcvv 3200   [.wsbc 3435   [_csb 3533    |-> cmpt 4729   -->wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  fmptcof2  29457  esumcl  30092  esumid  30106  esumgsum  30107  esumval  30108  esumel  30109  esumsplit  30115  esumaddf  30123  esumss  30134  esumpfinvalf  30138
  Copyright terms: Public domain W3C validator