MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmsca Structured version   Visualization version   Unicode version

Theorem clmsca 22865
Description: The ring of scalars  F of a subcomplex module is the restriction of the field of complex numbers to the base set of  F. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
isclm.f  |-  F  =  (Scalar `  W )
isclm.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
clmsca  |-  ( W  e. CMod  ->  F  =  (flds  K ) )

Proof of Theorem clmsca
StepHypRef Expression
1 isclm.f . . 3  |-  F  =  (Scalar `  W )
2 isclm.k . . 3  |-  K  =  ( Base `  F
)
31, 2isclm 22864 . 2  |-  ( W  e. CMod 
<->  ( W  e.  LMod  /\  F  =  (flds  K )  /\  K  e.  (SubRing ` fld ) ) )
43simp2bi 1077 1  |-  ( W  e. CMod  ->  F  =  (flds  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858  Scalarcsca 15944  SubRingcsubrg 18776   LModclmod 18863  ℂfldccnfld 19746  CModcclm 22862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-clm 22863
This theorem is referenced by:  clm0  22872  clm1  22873  clmadd  22874  clmmul  22875  clmcj  22876  clmsub  22880  clmneg  22881  clmabs  22883  cvsdiv  22932  isncvsngp  22949
  Copyright terms: Public domain W3C validator