Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvssb Structured version   Visualization version   Unicode version

Theorem cnvssb 37892
Description: Subclass theorem for converse. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
cnvssb  |-  ( Rel 
A  ->  ( A  C_  B  <->  `' A  C_  `' B
) )

Proof of Theorem cnvssb
StepHypRef Expression
1 cnvss 5294 . 2  |-  ( A 
C_  B  ->  `' A  C_  `' B )
2 cnvss 5294 . . 3  |-  ( `' A  C_  `' B  ->  `' `' A  C_  `' `' B )
3 dfrel2 5583 . . . . . . . 8  |-  ( Rel 
A  <->  `' `' A  =  A
)
43biimpi 206 . . . . . . 7  |-  ( Rel 
A  ->  `' `' A  =  A )
54eqcomd 2628 . . . . . 6  |-  ( Rel 
A  ->  A  =  `' `' A )
65adantr 481 . . . . 5  |-  ( ( Rel  A  /\  `' `' A  C_  `' `' B )  ->  A  =  `' `' A )
7 id 22 . . . . . . 7  |-  ( `' `' A  C_  `' `' B  ->  `' `' A  C_  `' `' B )
8 cnvcnvss 5589 . . . . . . 7  |-  `' `' B  C_  B
97, 8syl6ss 3615 . . . . . 6  |-  ( `' `' A  C_  `' `' B  ->  `' `' A  C_  B )
109adantl 482 . . . . 5  |-  ( ( Rel  A  /\  `' `' A  C_  `' `' B )  ->  `' `' A  C_  B )
116, 10eqsstrd 3639 . . . 4  |-  ( ( Rel  A  /\  `' `' A  C_  `' `' B )  ->  A  C_  B )
1211ex 450 . . 3  |-  ( Rel 
A  ->  ( `' `' A  C_  `' `' B  ->  A  C_  B
) )
132, 12syl5 34 . 2  |-  ( Rel 
A  ->  ( `' A  C_  `' B  ->  A  C_  B ) )
141, 13impbid2 216 1  |-  ( Rel 
A  ->  ( A  C_  B  <->  `' A  C_  `' B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    C_ wss 3574   `'ccnv 5113   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator