MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbin Structured version   Visualization version   Unicode version

Theorem csbin 4010
Description: Distribute proper substitution into a class through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
csbin  |-  [_ A  /  x ]_ ( B  i^i  C )  =  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ C )

Proof of Theorem csbin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3536 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ ( B  i^i  C )  = 
[_ A  /  x ]_ ( B  i^i  C
) )
2 csbeq1 3536 . . . . 5  |-  ( y  =  A  ->  [_ y  /  x ]_ B  = 
[_ A  /  x ]_ B )
3 csbeq1 3536 . . . . 5  |-  ( y  =  A  ->  [_ y  /  x ]_ C  = 
[_ A  /  x ]_ C )
42, 3ineq12d 3815 . . . 4  |-  ( y  =  A  ->  ( [_ y  /  x ]_ B  i^i  [_ y  /  x ]_ C )  =  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ C ) )
51, 4eqeq12d 2637 . . 3  |-  ( y  =  A  ->  ( [_ y  /  x ]_ ( B  i^i  C
)  =  ( [_ y  /  x ]_ B  i^i  [_ y  /  x ]_ C )  <->  [_ A  /  x ]_ ( B  i^i  C )  =  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ C ) ) )
6 vex 3203 . . . 4  |-  y  e. 
_V
7 nfcsb1v 3549 . . . . 5  |-  F/_ x [_ y  /  x ]_ B
8 nfcsb1v 3549 . . . . 5  |-  F/_ x [_ y  /  x ]_ C
97, 8nfin 3820 . . . 4  |-  F/_ x
( [_ y  /  x ]_ B  i^i  [_ y  /  x ]_ C )
10 csbeq1a 3542 . . . . 5  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
11 csbeq1a 3542 . . . . 5  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
1210, 11ineq12d 3815 . . . 4  |-  ( x  =  y  ->  ( B  i^i  C )  =  ( [_ y  /  x ]_ B  i^i  [_ y  /  x ]_ C ) )
136, 9, 12csbief 3558 . . 3  |-  [_ y  /  x ]_ ( B  i^i  C )  =  ( [_ y  /  x ]_ B  i^i  [_ y  /  x ]_ C )
145, 13vtoclg 3266 . 2  |-  ( A  e.  _V  ->  [_ A  /  x ]_ ( B  i^i  C )  =  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ C ) )
15 csbprc 3980 . . 3  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ ( B  i^i  C )  =  (/) )
16 csbprc 3980 . . . . 5  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )
17 csbprc 3980 . . . . 5  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ C  =  (/) )
1816, 17ineq12d 3815 . . . 4  |-  ( -.  A  e.  _V  ->  (
[_ A  /  x ]_ B  i^i  [_ A  /  x ]_ C )  =  ( (/)  i^i  (/) ) )
19 in0 3968 . . . 4  |-  ( (/)  i^i  (/) )  =  (/)
2018, 19syl6req 2673 . . 3  |-  ( -.  A  e.  _V  ->  (/)  =  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ C ) )
2115, 20eqtrd 2656 . 2  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ ( B  i^i  C )  =  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ C ) )
2214, 21pm2.61i 176 1  |-  [_ A  /  x ]_ ( B  i^i  C )  =  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533    i^i cin 3573   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-in 3581  df-nul 3916
This theorem is referenced by:  csbres  5399  disjxpin  29401  csbpredg  33172  onfrALTlem5  38757  onfrALTlem4  38758  disjinfi  39380
  Copyright terms: Public domain W3C validator