MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un00 Structured version   Visualization version   Unicode version

Theorem un00 4011
Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
un00  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )

Proof of Theorem un00
StepHypRef Expression
1 uneq12 3762 . . 3  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  u.  B )  =  ( (/)  u.  (/) ) )
2 un0 3967 . . 3  |-  ( (/)  u.  (/) )  =  (/)
31, 2syl6eq 2672 . 2  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  u.  B )  =  (/) )
4 ssun1 3776 . . . . 5  |-  A  C_  ( A  u.  B
)
5 sseq2 3627 . . . . 5  |-  ( ( A  u.  B )  =  (/)  ->  ( A 
C_  ( A  u.  B )  <->  A  C_  (/) ) )
64, 5mpbii 223 . . . 4  |-  ( ( A  u.  B )  =  (/)  ->  A  C_  (/) )
7 ss0b 3973 . . . 4  |-  ( A 
C_  (/)  <->  A  =  (/) )
86, 7sylib 208 . . 3  |-  ( ( A  u.  B )  =  (/)  ->  A  =  (/) )
9 ssun2 3777 . . . . 5  |-  B  C_  ( A  u.  B
)
10 sseq2 3627 . . . . 5  |-  ( ( A  u.  B )  =  (/)  ->  ( B 
C_  ( A  u.  B )  <->  B  C_  (/) ) )
119, 10mpbii 223 . . . 4  |-  ( ( A  u.  B )  =  (/)  ->  B  C_  (/) )
12 ss0b 3973 . . . 4  |-  ( B 
C_  (/)  <->  B  =  (/) )
1311, 12sylib 208 . . 3  |-  ( ( A  u.  B )  =  (/)  ->  B  =  (/) )
148, 13jca 554 . 2  |-  ( ( A  u.  B )  =  (/)  ->  ( A  =  (/)  /\  B  =  (/) ) )
153, 14impbii 199 1  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    u. cun 3572    C_ wss 3574   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by:  undisj1  4029  undisj2  4030  disjpr2  4248  disjpr2OLD  4249  rankxplim3  8744  ssxr  10107  rpnnen2lem12  14954  wwlksnext  26788  asindmre  33495  iunrelexp0  37994  uneqsn  38321
  Copyright terms: Public domain W3C validator